[1] |
张叶, 陆宇 . 亚胺吩嗪类药物抗结核作用研究进展. 中华结核和呼吸杂志, 2019,42(2):118-121.
|
[2] |
World Health Organization . Global tuberculosis report 2016. Geneva:World Health Organization, 2016.
doi: 10.1016/j.jctube.2019.100114
URL
pmid: 31788557
|
[3] |
Lu Y, Zheng M, Wang B , et al. Clofazimine analogs with efficacy against experimental tuberculosis and reduced potential for accumulation. Antimicrob Agents Chemother, 2011,55(11):5185-5193.
doi: 10.1128/AAC.00699-11
URL
pmid: 21844321
|
[4] |
Zhang D, Lu Y, Liu K , et al. Identification of less lipophilic riminophenazine derivatives for the treatment of drug-resistant tuberculosis. J Med Chem, 2012,55(19):8409-8417.
doi: 10.1021/jm300828h
URL
pmid: 22931472
|
[5] |
Xu J, Wang B, Fu L , et al. In Vitro and In Vivo Activities of the Riminophenazine TBI-166 against Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2019, 63(5). pii:e02155-18.
doi: 10.1128/AAC.02155-18
URL
pmid: 30782992
|
[6] |
Barry VC, Belton JG, Conalty ML , et al. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature, 1957,179(4568):1013-1015.
doi: 10.1038/1791013a0
URL
pmid: 13430770
|
[7] |
Yano T, Kassovska-Bratinova S, Teh JS , et al. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem, 2011,286(12):10276-10287.
doi: 10.1074/jbc.M110.200501
URL
pmid: 21193400
|
[8] |
Cholo MC, Steel HC, Fourie PB , et al. Clofazimine: current status and future prospects. J Antimicrob Chemother, 2012,67(2):290-298.
doi: 10.1093/jac/dkr444
URL
pmid: 22020137
|
[9] |
Cholo MC, Boshoff HI, Steel HC , et al. Effects of clofazimine on potassium uptake by a Trk-deletion mutant of Mycobacterium tuberculosis. J Antimicrob Chemother, 2006,57(1):79-84.
doi: 10.1093/jac/dki409
URL
pmid: 16286358
|
[10] |
Fukutomi Y, Maeda Y, Makino M . Apoptosis-inducing activity of clofazimine in macrophages. Antimicrob Agents Chemother, 2011,55(9):4000-4005.
doi: 10.1128/AAC.00434-11
URL
pmid: 21690278
|
[11] |
Zhang Y, Zhu H, Fu L , et al. Identifying Regimens Containing TBI-166, a New Drug Candidate against Mycobacterium tuberculosis In Vitro and In Vivo. Antimicrob Agents Chemother, 2019, 63(7): pii:e02496-18.
doi: 10.1128/AAC.02496-18
URL
pmid: 31061157
|
[12] |
李聃, 盛莉, 赵曼曼 , 等. 新型抗结核化合物TBI-166在比格犬体内的生物利用度. 国际药学研究杂志, 2015,42(2):194-198,205.
doi: 10.13220/j.cnki.jipr.2015.02.013
URL
|
[13] |
Jackett PS, Aber VR, Lowrie DB . Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis. J Gen microbiol, 1978,104(1):37-45.
doi: 10.1099/00221287-104-1-37
URL
pmid: 24084
|
[14] |
Van Rensburg CE, Jooné GK, O’sullivan JF , et al. Antimicrobial activities of clofazimine and B669 are mediated by lysophospholipids. Antimicrob Agents Chemother, 1992,36(12):2729-2735.
doi: 10.1128/aac.36.12.2729
URL
pmid: 1482140
|
[15] |
Ammerman NC, Swanson RV, Tapley A , et al. Clofazimine has delayed antimicrobial activity against Mycobacterium tuberculosis both in vitro and in vivo. J Antimicrob Chemother, 2017,72(2):455-461.
doi: 10.1093/jac/dkw417
URL
pmid: 27798204
|