Chinese Journal of Antituberculosis ›› 2013, Vol. 35 ›› Issue (9): 748-751.
Previous Articles Next Articles
LIU Zheng-wei, HUANG Yu, ZHAO Yan-lin
Received:
2013-07-15
Online:
2013-09-10
Published:
2013-09-08
Contact:
LIU Zheng-wei
E-mail:zhengweiliu@126.com
LIU Zheng-wei, HUANG Yu, ZHAO Yan-lin. Research progress on the detection methods of Mycobacterium tuberculosis gene mutation[J]. Chinese Journal of Antituberculosis, 2013, 35(9): 748-751.
[1]Cole ST,Brosch R,Parkhill J,et al. Dciphening the biology of M.tubeiculosis from the complete genome sequence.Nature,1998,393(6685):537-544.[2]Cole ST. Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett,1999,452(1/2):7-10.[3]Orita M, Suzuki Y, Sekiya T, et al. A rapid and sensitive detection of point mutations and genetic polymorphisms using polymerase chain reaction. Genomics, 1989,5(4):874-879.[4]Telenti A,Imboden P,Marchesi F,et al. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother, 1993,37(10):2054-2058.[5]Tahmasebi P, Farnia P, Sheikholslami F, et al. Rapid identification of extensively and extremely drug resistant tuberculosis from multidrug resistant strains; using PCR-RFLP and PCR-SSCP. Iran J Microbiol,2012,4(4):165-170.[6]朱敏,李锋,盛国平,等. 应用PCR-SSCP技术检测痰中结核分枝杆菌katG、rpoB、embB基因突变的研究. 中国防痨杂志,2007,29(6):508-510.[7]包洪,于庭,刘爱忠,等. PCR-SSCP方法用于痰标本中结核分支杆菌耐药基因的检测. 中国实验诊断学,2007,11(1):82-84.[8]Fischer SG, Lerman LS. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell, 1979, 16(1):191-200.[9]Fischer SG, Lerman LS. Separation of random fragments of DNA according to properties of their sequences. Proc Natl Acad Sci U S A, 1980, 77(8):4420-4424.[10]Fischer SG, Lerman LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A, 1983, 80(6): 1579-1583.[11]Li J,Xin J,Zhang L,et al. Rapid detection of rpoB mutations in rifampin resistant M.tuberculosis from sputum samples by denaturing gradient gel electrophoresis. Int J Med Sci,2012,9(2):148-156.[12]Scarpellini P, Braglia S, Carrera P, et al. Detection of rifampin resistance in Mycobacterium tuberculosis by double gradient-denaturing gradient gel electrophoresis. Antimicrob Agents Chemother,1999,43(10):2550-2554.[13]Kiers A, rost AP, van Soolingen D, et al. Use of DNA fingerprinting in international source case finding during a large outbreak of tuberculosis in The Netherlands. Int J Tuberc Lung Dis,1997,1(3):239-245.[14]Zhao LL, Xia Q, Lin N, et al. Multiplex allele-specific PCR combined with PCR-RFLP analysis for rapid detection of gyrA gene fluoroquinolone resistance mutations in Mycobacterium tuberculosis. J Microbiol Methods,2012,88(1):175-178.[15]Caws M, Tho DQ, Duy PM, et al. PCR-restriction fragment length polymorphism for rapid, low-cost identification of isoniazid-resistant Mycobacterium tuberculosis. J Clin Microbiol,2007,45(6):1789-1793.[16]Nachamkin I,Kang C,Weinstein MP. Detection of resistance to isoniazid, rifampin, and streptomycin in clinical isolates of Mycobacterium tuberculosis by molecular methods. Clin Infect Dis,1997,24(5):894-900.[17]Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol,1996,14(3):303-308.[18]Saribas Z, Kocagoz T, Alp A, et al. Rapid detection of rifampin resistance in Mycobacterium tuberculosis isolates by heteroduplex analysis and determination of rifamycin cross-resistance in rifampin-resistant isolates. J Clin Microbiol,2003,41(2):816-818.[19]Nam YH,Lee SH,Ahn YC, et al. Detection of rifampin resistant Mycobacterium tuberculosis complex using denaturing HPLC. Korean J Lab Med,2008,28(2):95-102.[20]Cooksey RC, Morlock GP, Holloway BP, et al. Temperature-mediated heteroduplex analysis performed by using denaturing high-performance liquid chromatography to identify sequence polymorphisms in Mycobacterium tuberculosis complex organisms. J Clin Microbiol,2002,40(5):1610-1616.[21]Yip CW, Leung KL, Wong D, et al. Denaturing HPLC for high-throughput screening of rifampicin-resistant Mycobacterium tuberculosis isolates. Int J Tuberc Lung Dis,2006,10(6):625-630.[22]Shi R,Otomo K,Yamada H,et al. Temperature-mediated heteroduplex analysis for the detection of drug-resistant gene mutations in clinical isolates of Mycobacterium tuberculosis by denaturing HPLC, SURVEYOR nuclease. Microbes Infect,2006,8(1):128-135.[23]Evans JT, Hawkey PM, Smith EG,et al. Automated high-throughput mycobacterial interspersed repetitive unit typing of Mycobacterium tuberculosis strains by a combination of PCR and nondenaturing high-performance liquid chromatography. J Clin Microbiol,2004,42(9):4175-4180.[24]Qiu P,Shandilya H,D’Alessio JM,et al. Mutation detection using Surveyor nuclease. Biotechniques,2004,36(4):702-707.[25]Pilato B,De Summa S,Danza K,et al. DHPLC/SURVEYOR nuclease: a sensitive, rapid and affordable method to analyze BRCA1 and BRCA2 mutations in breast cancer families. Mol Biotechnol,2012,52(1):8-15.[26]Williams DL, Spring L, Gillis TP, et al. Evaluation of a polymerase chain reaction-based universal heteroduplex generator assay for direct detection of rifampin susceptibility of Mycobacterium tuberculosis from sputum specimens. Clin Infect Dis,1998,26(2):446-450.[27]Mayta H, Gilman RH, Arenas F, et al. Evaluation of a PCR-based universal heteroduplex generator assay as a tool for rapid detection of multidrug-resistant Mycobacterium tuberculosis in Peru. J Clin Microbiol,2003,41(12):5774-5777.[28]Krothapalli S, May MK, Hestekin CN. Capillary electrophoresis-single strand conformation polymorphism for the detection of multiple mutations leading to tuberculosis drug resistance. J Microbiol Methods,2012,91(1):147-154.[29]Evans JT,Parveen A,Smith GE, et al. Application of denaturing HPLC to rapidly identify rifampicin-resistant Mycobacterium tuberculosis in low-and high-prevalence areas. J Antimicrob Chemother,2009,63(2):295-301.[30]Gundry CN, Vandersteen JG, Reed GH, et al. Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem,2003,49(3):396-406.[31]Wittwer CT,Reed GH,Gundry CN,et al.High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem,2003,49(6):853-860.[32]Ong DC, Yam WC, Siu GK, et al. Rapid detection of rifampicin- and isoniazid-resistant Mycobacterium tuberculosis by high-resolution melting analysis. J Clin Microbiol,2010,48(4):1047-1054.[33]Yadav R, Sethi S, Mewara A, et al. Rapid detection of rifampicin, isoniazid and streptomycin resistance in Mycobacterium tuberculosis clinical isolates by high-resolution melting curve analysis. J Appl Microbiol,2012,113(4):856-862.[34]Lee AS, Ong DC, Wong JC, et al. High-resolution melting analysis for the rapid detection of fluoroquinolone and streptomycin resistance in Mycobacterium tuberculosis. PLoS One,2012,7(2):e31934.[35]Boehme CC,Nabeta P,Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med,2010,363(11):1005-1015.[36]Martlila HJ,Soini H,Vyshnevskaya E,et al. Line probe assay in the rapid detection of rifampin-resistant Mycobacterium tuberculosis directly from clinical specimens. Scand J Infect Dis,1999,31(3):269-273.[37]Pang Y,Xia H,Zhang Z,et al. Multicenter evaluation of genechip for detection of multidrug-resistant Mycobacterium tuberculosis. J Clin Microbiol,2013,51(6):1707-1713. |
[1] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[2] | Pei Shaojun, Ou Xichao. Interpretation of the World Health Organization’s Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2024, 46(3): 260-266. |
[3] | Yu Meiling, Zhang Chenchen, Wei Wenjing, Zhao Yuchuan, Zhuo Wenji, Zheng Lei. Study on high-concentration p-aminosalicylic acid resistant Mycobacterium tuberculosis induced in vitro and the mutation sites [J]. Chinese Journal of Antituberculosis, 2023, 45(1): 60-66. |
[4] | SUN Qing, LIAO Xin-lei, WANG Chen-qian, JIANG Guang-lu, DONG Ling-ling, WANG Fen, ZHAO Li-ping, HUANG Hai-rong, WANG Gui-rong. Characterization of rifampin resistance determining region mutations in tuberculosis patients with GeneXpert MTB/RIF positive RNA polymerase β subunit gene mutation [J]. Chinese Journal of Antituberculosis, 2022, 44(4): 349-353. |
[5] | Wu Kunyang, Lu Yewei, Zhang Mingwu, Zhu Yelei, Li Xiangchen, Pan Junhang, Wang Xiaomeng, Wang Wei, Jiang Minmin, Peng Xiaojun, Wang Weixin, Gao Junshun, Liu Zhengwei. Analysis on characteristic of drug resistance-associated gene mutations and the correlation with genotypes among Mycobacterium tuberculosis isolates in Zhejiang Province [J]. Chinese Journal of Antituberculosis, 2022, 44(11): 1126-1134. |
[6] | LUO Dan, QIN Hui-fang, YE Jing, ZHAO Jin-ming, QIN Yi-xiang, LAN Ru-shu. Analysis on gene mutation characteristics of drug resistant Mycobacterium tuberculosis and its correlation with genotypes in Guangxi [J]. Chinese Journal of Antituberculosis, 2021, 43(6): 596-601. |
[7] | ZHAO Yong, LIN Shu-fang, LIN Jian, DAI Zhi-song, WEI Shu-zhen. Analysis of pyrazinamide resistance and pncA mutation in 125 multidrug-resistant Mycobacterium tuberculosis isolates [J]. Chinese Journal of Antituberculosis, 2021, 43(10): 1079-1083. |
[8] | LIANG Xiao-yan, LIN Mei, LIANG Da-bin, LAN Ru-shu, QIN Hui-fang, YE Jing, HUANG Li-wen. Drug resistance and genotypic characteristics of multidrug-resistant Mycobacterium tuberculosis in Guangxi Zhuang Autonomous Region [J]. Chinese Journal of Antituberculosis, 2020, 42(6): 578-582. |
[9] | HONG Chuang-yue, YANG Ting-ting, LI Jin-li, LI Shuang-jun, WU Li-kai, YANG Zheng, TAN Wei-guo. Analysis of characteristic of resistant gene mutations among multidrug-resistant Mycobacterium tuberculosis in Shenzhen [J]. Chinese Journal of Antituberculosis, 2020, 42(6): 583-589. |
[10] | GU Ji-xiu, LI Qing, MA ling, LI Yin-hua, WANG Dong-dong, SI Hong-yan. Application of next-generation sequencing technology in the diagnosis of drug-resistant tuberculosis [J]. Chinese Journal of Antituberculosis, 2020, 42(11): 1203-1208. |
[11] | SONG Ke-yu, ZHANG Qin, WANG Wen-jing, SHI Rui, WU Xu-ping. Analysis of drug-resistance of 1719 mycobacterium strains in Nanjing from 2017 to 2019 [J]. Chinese Journal of Antituberculosis, 2020, 42(11): 1214-1220. |
[12] | LIU Yuan-yuan, CHU Ping, HAN Shu-jing, YANG Hui, LU Jie. Research progress for delamanid resistance mechanism of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2020, 42(11): 1237-1242. |
[13] | ZHANG Man-e,HUANG Wen-bin,LU Zhi-hua,ZHANG Hong-bin. Study on resistance to rifampicin and isoniazid in 411 cases of pulmonary tuberculosis in Longyan City, Fujian Province [J]. Chinese Journal of Antituberculosis, 2020, 42(1): 54-59. |
[14] | Jia-wen LIU,Hong-yan LYU,Bei-chuan DING,Zhi-guo ZHANG. Analysis on identification of 129 non-tuberculosis mycobacteria strains using two molecular biology techniques [J]. Chinese Journal of Antituberculosis, 2019, 41(9): 999-1003. |
[15] | Zhao-gang SUN,Hong-jing ZHANG,Zi-hui LI,Qi SUN,Lin-na LYU,Li-ping PAN,Gilbert Sandy,Zong-de ZHANG,Shao-fa XU,Xia James. Design of a next generation microsequencing gene microarray and preliminary study of its effect on drug resistance detection [J]. Chinese Journal of Antituberculosis, 2019, 41(6): 609-615. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||