Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (12): 1332-1335.doi: 10.3969/j.issn.1000-6621.2021.12.018
• Review Articles • Previous Articles Next Articles
YANG Rui-fang*, LI Chuan-you()
Received:
2021-06-24
Online:
2021-12-10
Published:
2021-12-01
Contact:
LI Chuan-you
E-mail:lichuanyou6688@hotmail.com
YANG Rui-fang, LI Chuan-you. Research progress of relationship between CRISPR-Cas system and Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2021, 43(12): 1332-1335. doi: 10.3969/j.issn.1000-6621.2021.12.018
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.12.018
[1] |
Khawbung JL, Nath D, Chakraborty S. Drug resistant Tuberculosis: A review. Comp Immunol Microbiol Infect Dis, 2021, 74:101574. doi: 10.1016/j.cimid.2020.101574.
doi: 10.1016/j.cimid.2020.101574 URL |
[2] |
Hryhorowicz M, Lipinski D, Zeyland J, et al. CRISPR/Cas9 Immune System as a Tool for Genome Engineering. Arch Immunol Ther Exp (Warsz), 2017, 65(3):233-240. doi: 10.1007/s00005-016-0427-5.
doi: 10.1007/s00005-016-0427-5 URL |
[3] |
Liu L, Fan XD. CRISPR-Cas system: a powerful tool for genome engineering. Plant Mol Biol, 2014, 85(3):209-218. doi: 10.1007/s11103-014-0188-7.
doi: 10.1007/s11103-014-0188-7 URL |
[4] |
Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Trans R Soc Lond B Biol Sci, 2019, 374(1772):20180087. doi: 10.1098/rstb.2018.0087.
doi: 10.1098/rstb.2018.0087 URL |
[5] |
Koonin EV, Makarova KS. Mobile Genetic Elements and Evolution of CRISPR-Cas Systems:All the Way There and Back. Genome Biol Evol, 2017, 9(10):2812-2825. doi: 10.1093/gbe/evx192.
doi: 10.1093/gbe/evx192 URL |
[6] |
翟小倩, 鲍朗. CRISPR-Cas系统及其在结核分枝杆菌中的研究进展. 生物学杂志, 2018, 35(1):89-92. doi: 10.3969/j.issn.2095-1736.2018.01.089.
doi: 10.3969/j.issn.2095-1736.2018.01.089 |
[7] |
Wei J, Lu N, Li Z, et al. The Mycobacterium tuberculosis CRISPR-Associated Cas1 Involves Persistence and Tolerance to Anti-Tubercular Drugs. Biomed Res Int, 2019, 2019:7861695. doi: 10.1155/2019/7861695.
doi: 10.1155/2019/7861695 |
[8] |
冯欢欢, 单彩龙, 李金月, 等. CRISPR系统中Cas蛋白的分类及作用机制. 中国病原生物学杂志, 2018, 13(6):652-654, 663. doi: 10.13350/j.cjpb.180624.
doi: 10.13350/j.cjpb.180624 |
[9] |
Chen H, Zhang SD, Chen L, et al. Efficient Genome Editing of Magnetospirillum magneticum AMB-1 by CRISPR-Cas9 System for Analyzing Magnetotactic Behavior. Front Microbiol, 2018, 9:1569. doi: 10.3389/fmicb.2018.01569.
doi: 10.3389/fmicb.2018.01569 URL |
[10] | 黄琴琴. 结核分枝杆菌Cas2(Rv2816c)在胁迫应答及胞内存活中的作用与分子机理. 重庆:西南大学, 2015. |
[11] |
Killelea T, Bolt EL. CRISPR-Cas adaptive immunity and the three Rs. Biosci Rep, 2017, 37(4):BSR20160297. doi: 10.1042/BSR20160297.
doi: 10.1042/BSR20160297 |
[12] |
Plagens A, Richter H, Charpentier E, et al. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. FEMS Microbiol Rev, 2015, 39(3):442-463. doi: 10.1093/femsre/fuv019.
doi: 10.1093/femsre/fuv019 pmid: 25934119 |
[13] |
Wei W, Zhang S, Fleming J, et al. Mycobacterium tuberculosis type Ⅲ-A CRISPR/Cas system crRNA and its maturation have atypical features. FASEB J, 2019, 33(1):1496-1509. doi: 10.1096/fj.201800557RR.
doi: 10.1096/fj.201800557RR URL |
[14] |
Larson MH, Gilbert LA, Wang X, et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc, 2013, 8(11):2180-2196. doi: 10.1038/nprot.2013.132.
doi: 10.1038/nprot.2013.132 URL |
[15] |
Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2):442-451. doi: 10.1016/j.cell.2013.06.044.
doi: 10.1016/j.cell.2013.06.044 pmid: 23849981 |
[16] |
Qi LS, Larson MH, Gilbert LA, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5):1173-1183. doi: 10.1016/j.cell.2013.02.022.
doi: 10.1016/j.cell.2013.02.022 URL |
[17] | 刘雅婷. 结核分枝杆菌Cas蛋白表达纯化与功能研究. 郑州:郑州大学, 2012. |
[18] |
Zhang Y, Yang J, Bai G. Regulation of the CRISPR-Associated Genes by Rv2837c (CnpB) via an Orn-Like Activity in Tuberculosis Complex Mycobacteria. J Bacteriol, 2018, 200(8):e00743-17. doi: 10.1128/JB.00743-17.
doi: 10.1128/JB.00743-17 |
[19] |
Liu Z, Dong H, Cui Y, et al. Application of different types of CRISPR/Cas-based systems in bacteria. Microb Cell Fact, 2020, 19(1):172. doi: 10.1186/s12934-020-01431-z.
doi: 10.1186/s12934-020-01431-z URL |
[20] |
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014, 32(4):347-355. doi: 10.1038/nbt.2842.
doi: 10.1038/nbt.2842 URL |
[21] |
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121):819-823. doi: 10.1126/science.1231143.
doi: 10.1126/science.1231143 pmid: 23287718 |
[22] |
Li Y, Peng N. Endogenous CRISPR-Cas System-Based Genome Editing and Antimicrobials:Review and Prospects. Front Microbiol, 2019, 10:2471. doi: 10.3389/fmicb.2019.02471.
doi: 10.3389/fmicb.2019.02471 URL |
[23] |
Yan MY, Li SS, Ding XY, et al. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. mBio, 2020, 11(1):e02364-19. doi 10.1128/mBio.02364-19.
doi: 10.1128/mBio.02364-19 |
[24] |
Rock J. Tuberculosis drug discovery in the CRISPR era. PLoS Pathog, 2019, 15(9):e1007975. doi: 10.1371/journal.ppat.1007975.
doi: 10.1371/journal.ppat.1007975 URL |
[25] |
Rock JM, Hopkins FF, Chavez A, et al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol, 2017, 2:16274. doi: 10.1038/nmicrobiol.2016.274.
doi: 10.1038/nmicrobiol.2016.274 URL |
[26] |
郭越, 赵增祥, 张文姝, 等. 基因编辑调控技术在结核分枝杆菌基因功能研究中的应用进展. 中国病原生物学杂志, 2020, 15(4):483-486. doi: 10.13350/j.cjpb.200425.
doi: 10.13350/j.cjpb.200425 |
[27] |
Singh A, Gaur M, Sharma V, et al. Comparative Genomic Analysis of Mycobacteriaceae Reveals Horizontal Gene Transfer-Mediated Evolution of the CRISPR-Cas System in the Mycobacterium tuberculosis Complex. mSystems, 2021, 6(1):e00934-20. doi: 10.1128/mSystems.00934-20.
doi: 10.1128/mSystems.00934-20 |
[28] |
Zhang S, Li T, Huo Y, et al. Mycobacterium tuberculosis CRISPR/Cas system Csm1 holds clues to the evolutionary relationship between DNA polymerase and cyclase activity. Int J Biol Macromol, 2021, 170:140-149. doi: 10.1016/j.ijbiomac.2020.12.014.
doi: 10.1016/j.ijbiomac.2020.12.014 URL |
[29] |
Gunderson FF, Cianciotto NP. The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio, 2013, 4(2):e00074-13. doi: 10.1128/mBio.00074-13.
doi: 10.1128/mBio.00074-13 |
[30] |
Lam JT, Yuen KY, Ho PL, et al. Truncated Rv2820c enhances mycobacterial virulence ex vivo and in vivo. Microb Pathog, 2011, 50(6):331-335. doi: 10.1016/j.micpath.2011.02.008.
doi: 10.1016/j.micpath.2011.02.008 URL |
[31] |
Rindi L, Lari N, Garzelli C. Genes of Mycobacterium tuberculosis H37Rv down regulated in the attenuated strain H37Ra are restricted to M.tuberculosis complex species. New Microbiol, 2001, 24(3):289-294.
pmid: 11497087 |
[32] | 吴晓丽. 结核分枝杆菌Csm3蛋白功能的初步研究. 福州:福建农林大学, 2016. |
[33] |
Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 2015, 13(11):722-736. doi: 10.1038/nrmicro3569.
doi: 10.1038/nrmicro3569 pmid: 26411297 |
[34] |
Hatfull GF. Molecular Genetics of Mycobacteriophages. Microbiol Spectr, 2014, 2(2):1-36. doi: 10.1128/microbiolspec.MGM2-0032-2013.
doi: 10.1128/microbiolspec.MGM2-0032-2013 pmid: 25328854 |
[35] |
Ren L, Deng LH, Zhang RP, et al. Relationship between drug resistance and the clustered, regularly interspaced, short, palindromic repeat-associated protein genes cas1 and cas2 in Shigella from giant panda dung. Medicine (Baltimore), 2017, 96(7):e5922. doi: 10.1097/MD.0000000000005922.
doi: 10.1097/MD.0000000000005922 URL |
[36] |
Brudey K, Driscoll JR, Rigouts L, et al. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol, 2006, 6:23. doi: 10.1186/1471-2180-6-23.
doi: 10.1186/1471-2180-6-23 URL |
[1] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[2] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[3] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[6] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[7] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[8] | Li Xuelian, Zhang Hongyan, Wang Jun, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan. Safety of extended delamanid use in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 164-168. |
[9] | Xu Zian, Pu Feifei, Feng Jing, Xia Ping. Research progress of high-throughput sequencing technology in the diagnosis and treatment of osteoarticular tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 224-230. |
[10] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[11] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[12] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[13] | Geng Zimei, Wang Chaohong, Long Sibo, Zheng Maike, Shi Yiheng, Sun Yong, Zhao Yan, Wang Guirong. Analysis of bacteriological positivity and rifampicin resistance in patients with severe pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1050-1055. |
[14] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[15] | Wang Fei, Hua Duo, Guo Jianjian, Liu Chang, Han Lu, Ren Yi. Characteristic analysis of non-tuberculous mycobacterial pulmonary disease patients in Wuhan area from 2021 to 2023 [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1069-1076. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||