Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (11): 1196-1202.doi: 10.3969/j.issn.1000-6621.2020.11.010
• Original Articles • Previous Articles Next Articles
LI Bing-ying, ZHENG Xu-bin, HU Yi, XU Biao
Received:
2020-06-30
Online:
2020-11-10
Published:
2020-11-13
LI Bing-ying, ZHENG Xu-bin, HU Yi, XU Biao. Evaluation of the application value of the whole genome sequence analysis tools, TB Profiler v2.8.0, Mykrobe v0.7.0 and PhyResSE v1.0, in testing drug-resistant tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(11): 1196-1202. doi: 10.3969/j.issn.1000-6621.2020.11.010
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.11.010
药品名称 检测工具及结果 | DST结果 | 敏感度[%(95CI)] | 特异度[%(95CI)] | |
---|---|---|---|---|
耐药(株) | 敏感(株) | |||
异烟肼 | ||||
TB Profiler | 69.43(64.99~73.62) | 96.05(88.89~99.18) | ||
耐药 | 318 | 3 | ||
敏感 | 140 | 73 | ||
Mykrobe | 76.42(72.26~80.23) | 96.05(88.89~99.18) | ||
耐药 | 350 | 3 | ||
敏感 | 108 | 73 | ||
PhyResSE | 76.20(72.29~80.03) | 96.10(89.03~99.19) | ||
耐药 | 349 | 3 | ||
敏感 | 109 | 74 | ||
利福平 | ||||
TB Profiler | 90.81(87.78~93.30) | 97.40(90.93~99.68) | ||
耐药 | 415 | 2 | ||
敏感 | 42 | 75 | ||
Mykrobe | 87.75(84.38~90.61) | 96.10(89.03~99.19) | ||
耐药 | 401 | 3 | ||
敏感 | 56 | 74 | ||
PhyResSE | 90.81(87.78~93.30) | 96.10(88.03~99.19) | ||
耐药 | 415 | 3 | ||
敏感 | 42 | 74 | ||
乙胺丁醇 | ||||
TB Profiler | 81.61(76.37~86.12) | 82.78(77.77~87.07) | ||
耐药 | 213 | 47 | ||
敏感 | 48 | 226 | ||
Mykrobe | 79.31(73.88~84.06) | 82.42(77.37~86.74) | ||
耐药 | 207 | 48 | ||
敏感 | 54 | 225 | ||
PhyResSE | 79.69(74.30~84.40) | 83.88(78.97~88.04) | ||
耐药 | 208 | 44 | ||
敏感 | 53 | 229 | ||
吡嗪酰胺 | ||||
TB Profiler | 72.82(66.20~78.77) | 92.38(88.95~95.01) | ||
耐药 | 150 | 25 | ||
敏感 | 56 | 303 | ||
Mykrobe | 61.65(54.64~68.32) | 94.21(91.10~96.48) | ||
耐药 | 127 | 19 | ||
敏感 | 79 | 309 | ||
PhyResSE | 50.97(43.93~57.98) | 93.90(90.73~96.24) | ||
耐药 | 105 | 20 | ||
敏感 | 101 | 308 |
药品名称 检测工具及结果 | DST结果 | 敏感度[%(95CI)] | 特异度[%(95CI)] | |
---|---|---|---|---|
耐药(株) | 敏感(株) | |||
氟喹诺酮类 | ||||
TB Profiler | 81.48(74.63~87.14) | 96.50(94.10~98.13) | ||
耐药 | 132 | 13 | ||
敏感 | 30 | 359 | ||
Mykrobe | 82.10(75.31~87.67) | 98.12(96.16~99.24) | ||
耐药 | 133 | 7 | ||
敏感 | 29 | 365 | ||
PhyResSE | 88.27(82.29~92.79) | 96.77(94.43~98.32) | ||
耐药 | 143 | 12 | ||
敏感 | 19 | 360 | ||
阿米卡星 | ||||
TB Profiler | 48.89(33.70~64.23) | 99.80(98.85~99.99) | ||
耐药 | 22 | 1 | ||
敏感 | 23 | 483 | ||
Mykrobe | 55.56(40.00~70.36) | 99.59(98.52~99.95) | ||
耐药 | 25 | 2 | ||
敏感 | 20 | 482 | ||
PhyResSE | 60.00(44.33~74.30) | 99.59(98.52~99.95) | ||
耐药 | 27 | 2 | ||
敏感 | 18 | 482 | ||
链霉素 | ||||
TB Profiler | 78.77(73.92~83.09) | 88.89(83.80~92.82) | ||
耐药 | 256 | 23 | ||
敏感 | 69 | 184 | ||
Mykrobe | 76.00(70.98~80.54) | 89.37(84.35~93.22) | ||
耐药 | 247 | 22 | ||
敏感 | 78 | 185 | ||
PhyResSE | 79.38(74.57~83.65) | 90.34(85.47~94.00) | ||
耐药 | 258 | 20 | ||
敏感 | 67 | 187 |
[1] | World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization, 2019. |
[2] | 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础学组和临床学组. 结核分枝杆菌耐药性检测专家共识. 中国防痨杂志, 2019,41(2):129-137. doi: 10.3969/j.issn.1000-6621.2019.02.003. |
[3] |
Colman RE, Anderson J, Lemmer D, et al. Rapid Drug Susceptibility Testing of Drug-Resistant Mycobacterium tuberculosis Isolates Directly from Clinical Samples by Use of Amplicon Sequencing: a Proof-of-Concept Study. J Clin Microbiol, 2016,54(8):2058-2067. doi: 10.1128/JCM.00535-16.
doi: 10.1128/JCM.00535-16 URL pmid: 27225403 |
[4] | 郁大伟, 宋华峰, 邱文娜, 等. GeneXpert MTB/RIF检测MTB及利福平耐药的应用价值. 结核病与肺部健康杂志, 2019,8(3):160-162. doi: 10.3969/j.issn.2095-3755.2019.03.002. |
[5] | World Health Organization. Technical guide on next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex. Geneva: World Health Organization, 2018. |
[6] | 张洁, 任怡宣, 潘丽萍, 等. 全基因组测序在结核分枝杆菌研究中的应用. 中国防痨杂志, 2020,42(7):737-740. doi: 10.3969/j.issn.1000-6621.2020.07.017. |
[7] |
Cohen KA, Manson AL, Desjardins CA, et al. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med, 2019,11(1):45. doi: 10.1186/s13073-019-0660-8.
doi: 10.1186/s13073-019-0660-8 URL pmid: 31345251 |
[8] |
Bradley P, Gordon NC, Walker TM, et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun, 2015,6:10063. doi: 10.1038/ncomms10063.
doi: 10.1038/ncomms10063 URL pmid: 26686880 |
[9] |
Feuerriegel S, Schleusener V, Beckert P, et al. PhyResSE: a Web Tool Delineating Mycobacterium tuberculosis Antibiotic Resistance and Lineage from Whole-Genome Sequencing Data. J Clin Microbiol, 2015,53(6):1908-1914. doi: 10.1128/JCM.00025-15.
doi: 10.1128/JCM.00025-15 URL pmid: 25854485 |
[10] |
Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015,7(1):51. doi: 10.1186/s13073-015-0164-0.
URL pmid: 26019726 |
[11] |
van Beek J, Haanperä M, Smit PW, et al. Evaluation of whole genome sequencing and software tools for drug susceptibility testing of Mycobacterium tuberculosis. Clin Microbiol Infect, 2019,25(1):82-86. doi: 10.1016/j.cmi.2018.03.041.
doi: 10.1016/j.cmi.2018.03.041 URL pmid: 29653190 |
[12] |
Ngo TM, Teo YY. Genomic prediction of tuberculosis drug-resistance: benchmarking existing databases and prediction algorithms. BMC Bioinformatics, 2019,20(1):68. doi: 10.1186/s12859-019-2658-z.
doi: 10.1186/s12859-019-2658-z URL pmid: 30736750 |
[13] |
Huang H, Ding N, Yang T, et al. Cross-sectional Whole-genome Sequencing and Epidemiological Study of Multidrug-resistant Mycobacterium tuberculosis in China. Clin Infect Dis, 2019,69(3):405-413. doi: 10.1093/cid/ciy883.
URL pmid: 30321294 |
[14] |
Chen X, He G, Wang S, et al. Evaluation of Whole-Genome Sequence Method to Diagnose Resistance of 13 Anti-tuberculosis Drugs and Characterize Resistance Genes in Clinical Multi-Drug Resistance Mycobacterium tuberculosis Isolates From China. Front Microbiol, 2019,10:1741. doi: 10.3389/fmicb.2019.01741.
doi: 10.3389/fmicb.2019.01741 URL pmid: 31417530 |
[15] | Mahé P, El Azami M, Barlas P, et al. A large scale evaluation of TBProfiler and Mykrobe for antibiotic resistance prediction in Mycobacterium tuberculosis. Peer J, 2019,7:6857. doi: 10.7717/peerj.6857. |
[16] |
Schleusener V, Köser CU, Beckert P, et al. Mycobacterium tuberculosis resistance prediction and lineage classification from genome sequencing: comparison of automated analysis tools. Sci Rep, 2017,7:46327. doi: 10.1038/srep46327.
doi: 10.1038/srep46327 URL pmid: 28425484 |
[17] |
Coll F, Phelan J, Hill-Cawthorne GA, et al. Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet, 2018,50:307-316. doi: 10.1038/s41588-017-0029-0.
doi: 10.1038/s41588-017-0029-0 URL pmid: 29358649 |
[18] | Iwamoto T, Murase Y, Yoshida S, et al. Overcoming the pitfalls of automatic interpretation of whole genome sequencing data by online tools for the prediction of pyrazinamide resis-tance in Mycobacterium tuberculosis. PLoS One, 2019,14(2):0212798. doi: 10.1371/journal.pone.0212798. |
[19] |
Steiner A, Stucki D, Coscolla M, et al. KvarQ: targeted and direct variant calling from fastq reads of bacterial genomes. BMC Genomics, 2014,15(1):881. doi: 10.1186/1471-2164-15-881.
doi: 10.1186/1471-2164-15-881 URL |
[20] |
Engström A, Hoffner S, Juréen P. Detection of heteroresistant Mycobacterium tuberculosis by pyrosequencing. J Clin Microbiol, 2013,51(12):4210-4212. doi: 10.1128/JCM.01761-13.
URL pmid: 24048543 |
[1] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[2] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[3] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[4] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[5] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[6] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange , Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 243-257. |
[7] | Duan Hongfei, Tao Yong. Interpretation of social organization standard of Diagnosis Specification of Intraocular Tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 258-261. |
[8] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[9] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[10] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[11] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[12] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[13] | Li Xuelian, Zhang Hongyan, Wang Jun, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan. Safety of extended delamanid use in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 164-168. |
[14] | Qiu Yong, Quan Zhuo, Qu Rong, Tian Fajun, Li Meng, Wang Gengsheng, Wang Ya, Guo Mingcheng, Gao Qian. Evaluation of different tuberculosis diagnostic tools for detecting patients in a primary-level clinic in rural China: a real-world retrospective study [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 181-188. |
[15] | Xu Zian, Pu Feifei, Feng Jing, Xia Ping. Research progress of high-throughput sequencing technology in the diagnosis and treatment of osteoarticular tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 224-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||