Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (8): 874-879.doi: 10.3969/j.issn.1000-6621.2020.08.018
• Review Articles • Previous Articles Next Articles
QU Meng-jin, LIANG Zheng-min, WANG Yuan-zhi, ZHOU Xiang-mei()
Received:
2020-04-18
Online:
2020-08-10
Published:
2020-08-10
Contact:
ZHOU Xiang-mei
E-mail:zhouxm@cau.edu.cn
QU Meng-jin, LIANG Zheng-min, WANG Yuan-zhi, ZHOU Xiang-mei. Research progress of carbohydrate metabolism of Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(8): 874-879. doi: 10.3969/j.issn.1000-6621.2020.08.018
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.08.018
[1] |
Dheda K, Barry CE 3rd, Maartens G. Tuberculosis. Lancet, 2016,387(10024):1211-1226. doi: 10.1016/S0140-6736(15)00151-8.
doi: 10.1016/S0140-6736(15)00151-8 URL pmid: 26377143 |
[2] | World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization, 2019. |
[3] |
Lee W, VanderVen BC, Fahey RJ, et al. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem, 2013,288(10):6788-6800. doi: 10.1074/jbc.M112.445056.
URL pmid: 23306194 |
[4] |
Pandey AK, Sassetti CM. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci U S A, 2008,105(11):4376-4380. doi: 10.1073/pnas.0711159105.
doi: 10.1073/pnas.0711159105 URL pmid: 18334639 |
[5] |
Ehrt S, Schnappinger D, Rhee KY. Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis. Nat Rev Microbiol, 2018,16(8):496-507. doi: 10.1038/s41579-018-0013-4.
doi: 10.1038/s41579-018-0013-4 URL pmid: 29691481 |
[6] |
Cumming BM, Steyn AJ. Metabolic plasticity of central carbon metabolism protects mycobacteria. Proc Natl Acad Sci U S A, 2015,112(43):13135-13136. doi: 10.1073/pnas.1518171112.
doi: 10.1073/pnas.1518171112 URL pmid: 26483480 |
[7] |
Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr, 2019, 7(4):10.1128/microbiolspec.GPP3-0022-2018. doi: 10.1128/microbiolspec.GPP3-0022-2018.
doi: 10.1128/microbiolspec.GPP3-0053-2018 URL pmid: 31298205 |
[8] |
Shi L, Sohaskey CD, Pheiffer C, et al. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol, 2010,78(5):1199-1215. doi: 10.1111/j.1365-2958.2010.07399.x.
doi: 10.1111/j.1365-2958.2010.07399.x URL pmid: 21091505 |
[9] |
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998,393(6685):537-544. doi: 10.1038/31159.
doi: 10.1038/31159 URL pmid: 9634230 |
[10] |
Titgemeyer F, Amon J, Parche S, et al. A genomic view of sugar transport in Mycobacterium smegmatis and Mycobacterium tuberculosis. J Bacteriol, 2007,189(16):5903-5915. doi: 10.1128/JB.00257-07.
doi: 10.1128/JB.00257-07 URL pmid: 17557815 |
[11] |
Sassetti CM, Rubin EJ. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A, 2003,100(22):12989-12994. doi: 10.1073/pnas.2134250100.
doi: 10.1073/pnas.2134250100 URL pmid: 14569030 |
[12] |
Soni DK, Dubey SK, Bhatnagar R. ATP-binding cassette (ABC) import systems of Mycobacterium tuberculosis: target for drug and vaccine development. Emerg Microbes Infect, 2020,9(1):207-220. doi: 10.1080/22221751.2020.1714488.
doi: 10.1080/22221751.2020.1714488 URL pmid: 31985348 |
[13] |
Jiang D, Zhang Q, Zheng Q, et al. Structural analysis of Mycobacterium tuberculosis ATP-binding cassette transporter subunit UgpB reveals specificity for glycerophosphocholine. FEBS J, 2014,281(1):331-341. doi: 10.1111/febs.12600.
doi: 10.1111/febs.12600 URL pmid: 24299297 |
[14] |
Kalscheuer R, Weinrick B, Veeraraghavan U, et al. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2010,107(50):21761-21766. doi: 10.1073/pnas.1014642108.
doi: 10.1073/pnas.1014642108 URL pmid: 21118978 |
[15] |
Fullam E, Prokes I, Futterer K, et al. Structural and functional analysis of the solute-binding protein UspC from Mycobacterium tuberculosis that is specific for amino sugars. Open Biology, 2016,6(6):160105. doi: 10.1098/rsob.160105.
doi: 10.1098/rsob.160105 URL pmid: 27335320 |
[16] |
Shin SJ, Kim SY, Shin AR, et al. Identification of Rv2041c, a novel immunogenic antigen from Mycobacterium tuberculosis with serodiagnostic potential. Scandinavian journal of immunology, 2009,70(5):457-464. doi: 10.1111/j.1365-3083.2009.02324.x.
doi: 10.1111/j.1365-3083.2009.02324.x URL pmid: 19874550 |
[17] |
Muñoz-Elías EJ McKinney JD. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med, 2005,11(6):638-644. doi: 10.1038/nm1252.
doi: 10.1038/nm1252 URL pmid: 15895072 |
[18] |
Basu P, Sandhu N, Bhatt A, et al. The anaplerotic node is essential for the intracellular survival of Mycobacterium tuberculosis. J Biol Chem, 2018,293(15):5695-5704. doi: 10.1074/jbc.RA118.001839.
doi: 10.1074/jbc.RA118.001839 URL pmid: 29475946 |
[19] |
Marrero J, Rhee KY, Schnappinger D, et al. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A, 2010,107(21):9819-9824. doi: 10.1073/pnas.1000715107.
doi: 10.1073/pnas.1000715107 URL pmid: 20439709 |
[20] |
Puckett S, Trujillo C, Eoh H, et al. Inactivation of fructose-1,6-bisphosphate aldolase prevents optimal co-catabolism of glycolytic and gluconeogenic carbon substrates in Mycobacterium tuberculosis. PLoS Pathog, 2014,10(5):e1004144. doi: 10.1371/journal.ppat.1004144.
doi: 10.1371/journal.ppat.1004144 URL pmid: 24851864 |
[21] |
Trujillo C, Blumenthal A, Marrero J, et al. Triosephosphate isomerase is dispensable in vitro yet essential for Mycobacterium tuberculosis to establish infection. mBio, 2014,5(2):e00085. doi: 10.1128/mBio.00085-14.
doi: 10.1128/mBio.00085-14 URL pmid: 24757211 |
[22] |
Ganapathy U, Marrero J, Calhoun S, et al. Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis. Nature communications, 2015,6:7912. doi: 10.1038/ncomms8912.
doi: 10.1038/ncomms8912 URL pmid: 26258286 |
[23] |
Marrero J, Trujillo C, Rhee KY, et al. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog, 2013,9(1):e1003116. doi: 10.1371/journal.ppat.1003116.
doi: 10.1371/journal.ppat.1003116 URL pmid: 23326232 |
[24] |
Phong WY, Lin W, Rao SP, et al. Characterization of phosphofructokinase activity in Mycobacterium tuberculosis reveals that a functional glycolytic carbon flow is necessary to limit the accumulation of toxic metabolic intermediates under hypoxia. PLoS One, 2013,8(2):e56037. doi: 10.1371/journal.pone.0056037.
doi: 10.1371/journal.pone.0056037 URL pmid: 23409118 |
[25] |
Arroyo L, Rojas M, Franken KL, et al. Multifunctional T Cell Response to DosR and Rpf Antigens Is Associated with Protection in Long-Term Mycobacterium tuberculosis-Infected Individuals in Colombia. Clin Vaccine Immunol, 2016,23(10):813-824. doi: 10.1128/CVI.00217-16.
doi: 10.1128/CVI.00217-16 URL pmid: 27489136 |
[26] |
de la Paz Santangelo M, Gest PM, Guerin ME, et al. Glycolytic and non-glycolytic functions of Mycobacterium tuberculosis fructose-1,6-bisphosphate aldolase, an essential enzyme produced by replicating and non-replicating bacilli. J Biol Chem, 2011,286(46):40219-40231. doi: 10.1074/jbc.M111.259440.
doi: 10.1074/jbc.M111.259440 URL pmid: 21949126 |
[27] |
Grüning NM, Du D, Keller MA, et al. Inhibition of triosephosphate isomerase by phosphoenolpyruvate in the feedback-regulation of glycolysis. Open Biol, 2014,4(3):130232. doi: 10.1098/rsob.130232.
doi: 10.1098/rsob.130232 URL |
[28] |
Noy T, Vergnolle O, Hartman TE, et al. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis. J Biol Chem, 2016,291(13):7060-7069. doi: 10.1074/jbc.M115.707430.
doi: 10.1074/jbc.M115.707430 URL pmid: 26858255 |
[29] |
Chavadi S, Wooff E, Coldham NG, et al. Global effects of inactivation of the pyruvate kinase gene in the Mycobacterium tuberculosis complex. J Bacteriol, 2009,191(24):7545-7553. doi: 10.1128/JB.00619-09.
doi: 10.1128/JB.00619-09 URL pmid: 19820096 |
[30] |
Zhong W, Guo J, Cui L, et al. Pyruvate Kinase Regulates the Pentose-Phosphate Pathway in Response to Hypoxia in Mycobacterium tuberculosis. J Mol Biol, 2019,431(19):3690-3705. doi: 10.1016/j.jmb.2019.07.033.
doi: 10.1016/j.jmb.2019.07.033 URL pmid: 31381898 |
[31] |
Snásˇel J, Pichová I. Allosteric regulation of pyruvate kinase from Mycobacterium tuberculosis by metabolites. Biochim Biophys Acta Proteins Proteom, 2019,1867(2):125-139. doi: 10.1016/j.bbapap.2018.11.002.
doi: 10.1016/j.bbapap.2018.11.002 URL pmid: 30419357 |
[32] |
Howard NC, Khader SA. Immunometabolism during Mycobacterium tuberculosis Infection. Trends Microbiol, 2020: S0966-842X(20)30103-7. doi: 10.1016/j.tim.2020.04.010.
doi: 10.1016/j.tim.2020.02.006 URL pmid: 32544442 |
[33] |
Shi L, Eugenin EA, Subbian S. Immunometabolism in Tuberculosis. Front Immunol, 2016,7:150. doi: 10.3389/fimmu.2016.00150.
doi: 10.3389/fimmu.2016.00150 URL pmid: 27148269 |
[34] |
Shi L, Jiang Q, Bushkin Y, et al. Biphasic Dynamics of Macrophage Immunometabolism during Mycobacterium tuberculosis Infection. mBio, 2019,10(2):e02550-18. doi: 10.1128/mBio.02550-18.
doi: 10.1128/mBio.02550-18 URL pmid: 30914513 |
[35] |
Rizvi A, Shankar A, Chatterjee A, et al. Rewiring of Metabolic Network in Mycobacterium tuberculosis During Adaptation to Different Stresses. Front Microbiol, 2019,10:2417. doi: 10.3389/fmicb.2019.02417.
doi: 10.3389/fmicb.2019.02417 URL pmid: 31736886 |
[36] |
Russell DG, Huang L, VanderVen BC. Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol, 2019,19(5):291-304. doi: 10.1038/s41577-019-0124-9.
doi: 10.1038/s41577-019-0124-9 URL pmid: 30679807 |
[37] |
Koul A, Vranckx L, Dhar N, et al. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism. Nat Commun, 2014,5:3369. doi: 10.1038/ncomms4369.
doi: 10.1038/ncomms4369 URL pmid: 24569628 |
[38] |
Stokes JM, Lopatkin AJ, Lobritz MA, et al. Bacterial Metabo-lism and Antibiotic Efficacy. Cell Metab, 2019,30(2):251-259. doi: 10.1016/j.cmet.2019.06.009.
doi: 10.1016/j.cmet.2019.06.009 URL pmid: 31279676 |
[39] |
Zhang F, Li S, Wen S, et al. Comparison of in vitro Susceptibility of Mycobacteria Against PA-824 to Identify Key Residues of Ddn, the Deazoflavin-Dependent Nitroreductase from Mycobacterium tuberculosis. Infect Drug Resist, 2020,13:815-822. doi: 10.2147/IDR.S240716.
doi: 10.2147/IDR.S240716 URL pmid: 32210596 |
[40] |
Pethe K, Bifani P, Jang J, et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med, 2013,19(9):1157-1160. doi: 10.1038/nm.3262.
doi: 10.1038/nm.3262 URL pmid: 23913123 |
[41] |
Korte J, Alber M, Trujillo CM, et al. Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in Mycobacterium tuberculosis In Vitro and in Mice. PLoS Pathog, 2016,12(12):e1006043. doi: 10.1371/journal.ppat.1006043.
doi: 10.1371/journal.ppat.1006043 URL pmid: 27936238 |
[42] |
Eoh H, Wang Z, Layre E, et al. Metabolic anticipation in Mycobacterium tuberculosis. Nat Microbiol, 2017,2:17084. doi: 10.1038/nmicrobiol.2017.84.
URL pmid: 28530656 |
[43] |
Zhong W, Cui L, Goh BC, et al. Allosteric pyruvate kinase-based “logic gate” synergistically senses energy and sugar levels in Mycobacterium tuberculosis. Nat Commun, 2017,8(1):1986. doi: 10.1038/s41467-017-02086-y.
doi: 10.1038/s41467-017-02086-y URL pmid: 29215013 |
[44] |
Stincone A, Prigione A, Cramer T, et al. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biol Rev Camb Philos Soc, 2015,90(3):927-963. doi: 10.1111/brv.12140.
doi: 10.1111/brv.12140 URL pmid: 25243985 |
[45] |
Chao WC, Yen CL, Hsieh CY, et al. Mycobacterial infection induces higher interleukin-1β and dysregulated lung inflammation in mice with defective leukocyte NADPH oxidase. PLoS One, 2017,12(12):e0189453. doi: 10.1371/journal.pone.0189453.
doi: 10.1371/journal.pone.0189453 URL pmid: 29228045 |
[46] |
Mehrotra P, Jamwal SV, Saquib N, et al. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage. PLoS Pathog, 2014,10(7):e1004265. doi: 10.1371/journal.ppat.1004265.
doi: 10.1371/journal.ppat.1004265 URL pmid: 25058590 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[5] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[6] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[7] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[8] | Shu Wei, Liu Yuhong. Committed to innovation and striving for long-term progress: interpretation of research and innovation chapter in the Global Tuberculosis Report 2024 [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 137-141. |
[9] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[10] | Xu Liangrun, Yang Mingying, Guo Yingwu, Wang Yun, Xu Jingjing, Hou Juyan, Ma Yunhong. Effect of family collaborative care model in self-management of new smear-positive tuberculosis patients under the health belief model collaborative [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 210-217. |
[11] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[12] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[13] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[14] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[15] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||