Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (5): 487-492.doi: 10.19982/j.issn.1000-6621.20230036
• Original Articles • Previous Articles Next Articles
Yan Xiaojing(), Wang Qingfeng(
), Yang Yang, Chu Naihui, Nie Wenjuan
Received:
2023-02-20
Online:
2023-05-10
Published:
2023-04-25
Contact:
Chu Naihui,Nie Wenjuan
E-mail:dongchu1994@sina.com;xiaobingxiaomei@sina.cn
CLC Number:
Yan Xiaojing, Wang Qingfeng, Yang Yang, Chu Naihui, Nie Wenjuan. Diagnostic value of a nanopore sequencing assay of bronchoalveolar lavage fluid in smear-negative pulmonary tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(5): 487-492. doi: 10.19982/j.issn.1000-6621.20230036
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230036
[1] | World Health Organization.Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[2] | World Health Organization. Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of Tuberculosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children. Geneva:World Health Organization, 2013. |
[3] |
Gliddon HD, Frampton D, Munsamy V, et al. A Rapid Drug Resistance Genotyping Workflow for Mycobacterium tuberculosis, Using Targeted Isothermal Amplification and Nanopore Sequencing. Microbiol Spectr, 2021, 9(3): e0061021. doi:10.1128/Spectrum.00610-21.
doi: 10.1128/Spectrum.00610-21 URL |
[4] |
Liu Z, Yang Y, Wang Q, et al. Diagnostic value of a nanopore sequencing assay of bronchoalveolar lavage fluid in pulmonary tuberculosis. BMC Pulm Med, 2023, 23(1):77. doi:10.1186/s12890-023-02337-3.
doi: 10.1186/s12890-023-02337-3 |
[5] | 中华人民共和国国家卫生和计划生育委员会.WS 288—2017肺结核诊断. 2017-11-09. |
[6] |
Votintseva AA, Bradley P, Pankhurst L, et al. Same-Day Diagnostic and Surveillance Data for Tuberculosis via Whole-Genome Sequencing of Direct Respiratory Samples. J Clin Microbiol, 2017, 55(5): 1285-1298. doi:10.1128/JCM.02483-16.
doi: 10.1128/JCM.02483-16 pmid: 28275074 |
[7] |
De Coster W, D’Hert S, Schultz DT, et al. NanoPack: visua-lizing and processing long read sequencing data. Bioinforma-tics, 2018, 34(15): 2666-2669. doi:10.1093/bioinformatics/bty149.
doi: 10.1093/bioinformatics/bty149 |
[8] |
Hill JT, Demarest BL, Bisgrove BW, et al. Poly peak parser: Method and software for identifification of unknown indels using sanger sequencing of polymerase chain reaction products. Dev Dyn, 2014, 243(12):1632-1636. doi:10.1002/dvdy.24183.
doi: 10.1002/dvdy.24183 URL |
[9] |
Chen L, Cai Y, Zhou G, et al. Rapid Sanger sequencing of the 16S rRNA gene for identifification of some common pathogens. PLoS One, 2014, 9(2): e88886. doi:10.1371/journal.pone.0088886.
doi: 10.1371/journal.pone.0088886 URL |
[10] |
Tewari D, Cieply S, Livengood J. Identifification of bacteria recovered from animals using the 16S ribosomal RNA gene with pyrosequencing and Sanger sequencing. J Vet Diagn Invest, 2011, 23(6):1104-1108. doi:10.1177/1040638711425583.
doi: 10.1177/1040638711425583 URL |
[11] |
Jarvie T. Next generation sequencing technologies. Drug Discov Today Technol, 2005, 2(3): 255-260. doi:10.1016/j.ddtec.2005.08.003.
doi: 10.1016/j.ddtec.2005.08.003 URL |
[12] |
Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin Chem, 2009, 55(4): 641-658. doi:10.1373/clinchem.2008.112789.
doi: 10.1373/clinchem.2008.112789 pmid: 19246620 |
[13] |
Simner PJ, Miller S, Carroll KC. Understanding the Promises and Hurdles of Metagenomic Next-Generation Sequencing as a Diagnostic Tool for Infectious Diseases. Clin Infect Dis, 2018, 66(5):778-788. doi:10.1093/cid/cix881.
doi: 10.1093/cid/cix881 pmid: 29040428 |
[14] |
Wilson MR, Naccache SN, Samayoa E, et al. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N Engl J Med, 2014, 370(25): 2408-2417. doi:10.1056/NEJMoa1401268.
doi: 10.1056/NEJMoa1401268 URL |
[15] |
Satta G, Lipman M, Smith GP, et al. Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential? Clin Microbiol Infect, 2018, 24(6): 604-609. doi:10.1016/j.cmi.2017.10.030.
doi: 10.1016/j.cmi.2017.10.030 URL |
[16] |
van Ingen J, Kohl TA, Kranzer K, et al. Global outbreak of severe Mycobacterium chimaera disease after cardiac surgery: a molecular epidemiological study. Lancet Infect Dis, 2017, 17(10): 1033-1041. doi:10.1016/S1473-3099(17)30324-9.
doi: S1473-3099(17)30324-9 pmid: 28711585 |
[17] |
Wang L, Liu D, Yung L, et al. Co-Infection with 4 Species of Mycobacteria Identified by Using Next-Generation Sequencing. Emerg Infect Dis, 2021, 27(11): 2948-2950. doi:10.3201/eid2711.203458.
doi: 10.3201/eid2711.203458 pmid: 34670649 |
[18] |
Zhu H, Zhu M, Lei JH, et al. Metagenomic Next-Generation Sequencing Can Clinch Diagnosis of Non-Tuberculous Mycobacterial Infections: A Case Report. Front Med (Lausanne), 2021, 8:679755. doi:10.3389/fmed.2021.679755.
doi: 10.3389/fmed.2021.679755 |
[19] |
Hendrix J, Epperson LE, Durbin D, et al. Intraspecies plasmid and genomic variation of Mycobacterium kubicae revealed by the complete genome sequences of two clinical isolates. Microb Genom, 2021, 7(1): mgen000497. doi:10.1099/mgen.0.000497.
doi: 10.1099/mgen.0.000497 |
[20] |
Stefani MMA, Avanzi C, Bührer-Sékula S, et al. Whole genome sequencing distinguishes between relapse and reinfection in recurrent leprosy cases. PLoS Negl Trop Dis, 2017, 11(6): e0005598. doi:10.1371/journal.pntd.0005598.
doi: 10.1371/journal.pntd.0005598 URL |
[21] |
Laver T, Harrison J, O’Neill PA, et al. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif, 2015, 3:1-8. doi:10.1016/j.bdq.2015.02.001.
doi: 10.1016/j.bdq.2015.02.001 URL |
[22] |
Alvarez JR, Skachkov D, Massey SE, et al. DNA/RNA transverse current sequencing: intrinsic structural noise from neighboring bases. Front Genet, 2015, 6: 213. doi:10.3389/fgene.2015.00213.
doi: 10.3389/fgene.2015.00213 pmid: 26150827 |
[23] |
Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol, 2018, 19(1): 90. doi:10.1186/s13059-018-1462-9.
doi: 10.1186/s13059-018-1462-9 pmid: 30005597 |
[24] |
Serpa PH, Deng X, Abdelghany M, et al. Metagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infections. Genome Med, 2022, 14(1):74. doi:10.1186/s13073-022-01072-4.
doi: 10.1186/s13073-022-01072-4 pmid: 35818068 |
[25] |
Wang D, Wang W, Ding Y, et al. Metagenomic Next-Generation Sequencing Successfully Detects PulmonaryInfectious Pathogens in Children With Hematologic Malignancy. Front Cell Infect Microbiol, 2022, 12: 899028. doi:10.3389/fcimb.2022.899028.
doi: 10.3389/fcimb.2022.899028 URL |
[26] |
Wei J, Sun J, Shuai X, et al. Sensitivity of PCR analysis (melting curve method) in diagnosis of Pulmonary Tuberculosis (PTB) based on Bronchoalveolar Lavage (BAL) by bronchoscope. Pak J Med Sci, 2022, 38(5):1333-1337. doi:10.12669/pjms.38.5.5480.
doi: 10.12669/pjms.38.5.5480 pmid: 35799751 |
[1] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[2] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[3] | Yan Xiaojing, Wang Yujin, Wang Jun, Jing Wei, Li Xuelian, Cheng Jie, Yang Guoli, Wang Yuqing, Chu Naihui, Nie Wenjuan, Jiao Xiaoke. A multicenter clinical study on the diagnostic value of nanopore sequencing technology in patients with smear-negative tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 169-174. |
[4] | Yan Guangxuan, Wang Xueyu, Wang Yujin, Lan Tinglong, Nie Wenjuan. Diagnostic value of using metagenomic second-generation sequencing on suspected osteoarticular tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 175-180. |
[5] | Wang Yiting, Meng Xiangli, Fu Yin, Cao Xiaolong, Zheng Huiwen, He Wencong, Song Zexuan, Zhao Yanlin. Advances in the application of metagenomic sequencing for tuberculosis prevention and control [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 976-981. |
[6] | Xu Yu, He Yukun, Zhou Dexun, Zhang Pingji. Analysis of the distribution characteristics of microbial communities in the lower respiratory tract of pulmonary tuberculosis patients based on metagenomic sequencing [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 634-640. |
[7] | Song Hongge, Liu Weigao, Chen Li. A comparative study on the therapeutic effects of total hip joint type spacer and pressure model spacer in patients with mid to late stage hip tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 562-566. |
[8] | Li Ting, Liu Shuang, Wang Danxia, Lu Jia, Cheng Qianqian, Chen Chuang, He Jin’ge, Zhang Linglin, Xia Yong, Li Jing, Zhang Shu, Gao Wenfeng, Xia Lan. Evaluation of health economics of implementation of tuberculosis prevention and control program in Sichuan Province from 2011 to 2020 [J]. Chinese Journal of Antituberculosis, 2024, 46(3): 333-339. |
[9] | Gulina Badeerhan, Liu Nianqiang, Yipaer Aihaiti, Wang Le, Wang Senlu, Zulikatiayi Abudula, Wang Mingzhe, Zhang Jing, Wang Xinqi, Bi Hongbo. The effect of GeneXpert MTB/RIF detection technology in tuberculosis prevention and control program in Xinjiang [J]. Chinese Journal of Antituberculosis, 2024, 46(2): 173-177. |
[10] | Liu Shuren, Fu Lin, Wang Lianbo, Zhao Guisong, Li Zhuo, Dong Zhaoliang. Application of blood management in the perioperative period of lumbar tuberculosis under the concept of enhanced recovery after surgery [J]. Chinese Journal of Antituberculosis, 2024, 46(11): 1343-1349. |
[11] | Li Jing, Jiang Qi, Jiang Yuan, Shen Xin. Evaluation of performance of PCR fluorescent probe method for detecting Mycobacterium tuberculosis complex and rifampicin resistance [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1250-1258. |
[12] | Li Xiaoying, Fang Yulian, Ning Jing, Xu Yongsheng. Research progress of GeneXpert MTB/RIF stool test in children tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(1): 119-123. |
[13] | Zhang Tianxiang, Xu Hongyan, Shi Jie, Zhu Lei, Xu Hui, Wu Qianhong. Correlation between estradiol and Mucoprotein 5B in airway Goblet cell with inflammation and clinical prognosis in patients with bronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(9): 885-890. |
[14] | Zhang Zhiguo, Shang Yuanyuan, Zhang Xuxia, Liu Rongmei, Ma Liping, Qin Lin, Kong Zhongshun, Ren Weicong. Value of CRISPR-Cas13a detection in the diagnosis of pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(6): 589-593. |
[15] | Song Ruixue, Wei Rongrong, Dong Jing, Jia Hongyan, Du Boping, Sun Qi, Xing Aiying, Li Zihui, Zhu Chuanzhi, Zhang Zongde, Pan Liping. The performance of interferon gamma-induced protein 10 mRNA detection technology in auxiliary diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(5): 471-476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||