[1] |
聂琦, 周勇, 陈华, 等. 非结核分枝杆菌病流行病学研究进展. 中华临床感染病杂志, 2020, 13(5):394-400. doi:10.3760/cma.j.issn.1674-2397.2020.05.014.
|
[2] |
中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版). 中华结核和呼吸杂志, 2020, 43(11):918-946. doi:10.3760/cma.j.cn112147-20200508-00570.
|
[3] |
Xu N, Li L, Wu S. Epidemiology and laboratory detection of non-tuberculous mycobacteria. Heliyon, 2024, 10(15):e35311. doi:10.1016/j.heliyon.2024.e35311.
|
[4] |
梁锋, 刘德情, 陈华, 等. 广州市非结核分枝杆菌病流行病学特征分析. 中国防痨杂志, 2024, 46(11):1373-1379. doi:10.19982/j.issn.1000-6621.20240185.
|
[5] |
Zhang Y, Sun R, Yu C, et al. Spatial Heterogeneity of Nontuberculous Mycobacterial Pulmonary Disease in Shanghai: Insights from a Ten-Year Population-Based Study. Int J Infect Dis, 2024,143:107001. doi:10.1016/j.ijid.2024.107001.
|
[6] |
刘曾维, 陈品儒, 黎惠如, 等. 堪萨斯分枝杆菌肺病的临床及CT影像特征. 分子影像学杂志, 2024, 47(3):321-326. doi:10.12122/j.issn.1674-4500.2024.03.16.
|
[7] |
Daley CL, Iaccarino JM, Lange C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur Respir J, 2020, 56(1):2000535. doi:10.1183/13993003.00535-2020.
|
[8] |
Wang PH, Pan SW, Wang SM, et al. The Impact of Nontuberculous Mycobacteria Species on Mortality in Patients With Nontuberculous Mycobacterial Lung Disease. Front Microbiol, 2022,13:909274. doi:10.3389/fmicb.2022.909274.
|
[9] |
Cheng LP, Chen SH, Lou H, et al. Factors Associated with Treatment Outcome in Patients with Nontuberculous Mycobacterial Pulmonary Disease: A Large Population-Based Retrospective Cohort Study in Shanghai. Trop Med Infect Dis, 2022, 7(2):27. doi:10.3390/tropicalmed7020027.
|
[10] |
Liu CJ, Huang HL, Cheng MH, et al. Outcome of patients with and poor prognostic factors for Mycobacterium kansasii-pulmonary disease. Respir Med, 2019, 151:19-26. doi:10.1016/j.rmed.2019.03.015.
|
[11] |
Zhang YY, Yu CL, Jiang Y, et al. Drug resistance profile of Mycobacterium kansasii clinical isolates before and after 2-month empirical antimycobacterial treatment. Clin Microbiol Infect, 2023, 29(3):353-359. doi:10.1016/j.cmi.2022.10.002.
|
[12] |
任忠雪. 创新药物研发中的高通量筛选技术. 工程技术研究, 2024, 6(16):128-130. doi:10.12417/2705-0998.24.16.043.
|
[13] |
Yasi EA, Kruyer NS, Peralta-Yahya P. Advances in G protein-coupled receptor high-throughput screening. Curr Opin Biotechnol, 2020, 64:210-217. doi:10.1016/j.copbio.2020.06.004.
|
[14] |
Woods GL, Brown-Elliott BA, Conville PS, et al. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes [Internet]. 2nd ed. Wayne (PA): Clinical and Laboratory Standards Institute, 2011.
|
[15] |
Pennings LJ, Ruth MM, Wertheim HFL, et al. The Benzimidazole SPR719 Shows Promising Concentration-Dependent Activity and Synergy against Nontuberculous Mycobacteria. Antimicrob Agents Chemother, 2021, 65(4):e02469-20. doi:10.1128/AAC.02469-20.
|
[16] |
武瑞君, 李玮琦, 杨阳, 等. 小分子药物筛选技术研究现状及其应用进展. 医药导报, 2024, 43(2):255-261. doi:10.3870/j.issn.1004-0781.2024.02.017.
|
[17] |
Wang Y, Jeon H. 3D cell cultures toward quantitative high-throughput drug screening. Trends Pharmacol Sci, 2022, 43(7):569-581. doi:10.1016/j.tips.2022.03.014.
pmid: 35504760
|
[18] |
Gentile F, Yaacoub JC, Gleave J, et al. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking. Nat Protoc, 2022, 17(3):672-697. doi:10.1038/s41596-021-00659-2.
pmid: 35121854
|
[19] |
Giri AK, Ianevski A. High-throughput screening for drug discovery targeting the cancer cell-microenvironment interactions in hematological cancers. Expert Opin Drug Discov, 2022, 17(2):181-190. doi:10.1080/17460441.2022.1991306.
|
[20] |
Shinn P, Chen L, Ferrer M, et al. High-Throughput Screening for Drug Combinations. Methods Mol Biol, 2019,1939:11-35. doi:10.1007/978-1-4939-9089-4_2.
|
[21] |
Cao D, Yuan X, Jiang X, et al. Antimicrobial and Antibiofilm Effects of Bithionol against Mycobacterium abscessus. Antibio-tics (Basel), 2024, 13(6):529. doi:10.3390/antibiotics13060529.
|
[22] |
Li H, Li T, Zhang L, et al. Antimicrobial compounds from an FDA-approved drug library with activity against Streptococcus suis. J Appl Microbiol, 2022, 132(3):1877-1886. doi:10.1111/jam.15377.
|
[23] |
Blasco B, Jang S, Terauchi H, et al. High-throughput screening of small-molecules libraries identified antibacterials against clinically relevant multidrug-resistant A. baumannii and K. pneumoniae. EBioMedicine, 2024,102:105073. doi:10.1016/j.ebiom.2024.105073.
|
[24] |
Zweijpfenning SMH, Ingen JV, Hoefsloot W. Geographic Distribution of Nontuberculous Mycobacteria Isolated from Clinical Specimens: A Systematic Review. Semin Respir Crit Care Med, 2018, 39(3):336-342. doi:10.1055/s-0038-1660864.
pmid: 30071548
|
[25] |
Wu J, Zhang Y, Li J, et al. Increase in nontuberculous mycobacteria isolated in Shanghai, China: results from a population-based study. PLoS One, 2014, 9(10):e109736. doi:10.1371/journal.pone.0109736.
|
[26] |
Kwon YS, Koh WJ. Diagnosis and Treatment of Nontuberculous Mycobacterial Lung Disease. J Korean Med Sci, 2016, 31(5):649-659. doi:10.3346/jkms.2016.31.5.649.
|
[27] |
Larsson LO, Polverino E, Hoefsloot W, et al. Pulmonary disease by non-tuberculous mycobacteria-clinical management, unmet needs and future perspectives. Expert Rev Respir Med, 2017, 11(12):977-989. doi:10.1080/17476348.2017.1386563.
|
[28] |
Srivastava S, Gumbo T. Clofazimine for the Treatment of Mycobacterium kansasii. Antimicrob Agents Chemother, 2018, 62(8):e00248-18. doi:10.1128/AAC.00248-18.
|
[29] |
李春杏, 朱珠. 抗血小板新药 vorapaxar. 中国新药杂志, 2015, 24(6):601-604,643.
|
[30] |
Chaudhary R, Mohananey A, Sharma SP, et al. Improving Outcomes in Cardiovascular Diseases: A Review on Vorapaxar. Cardiol Rev, 2022, 30(5):241-246. doi:10.1097/CRD.0000000000000390.
|