Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (7): 631-638.doi: 10.19982/j.issn.1000-6621.20230153
• Special Topic • Previous Articles Next Articles
Song Yuanyuan, Xia Hui(), Zhao Yanlin
Received:
2023-05-10
Online:
2023-07-10
Published:
2023-06-29
Contact:
Xia Hui, Email: Supported by:
CLC Number:
Song Yuanyuan, Xia Hui, Zhao Yanlin. Development process of setting of critical concentrations for phenotypic drug susceptibility testing of Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(7): 631-638. doi: 10.19982/j.issn.1000-6621.20230153
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230153
药品 | L-J固体比例法(μg/ml) | MGIT液体法(μg/ml) | 微孔板法(μg/ml) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
中国 推荐1 | WHO 推荐2 | CLSI 推荐3 | 中国 推荐1 | WHO 推荐2 | CLSI 推荐3,4 | EUCAST 推荐5 | DST熟练 度测试 推荐敏感 (≤)6 | WHO推荐 敏感(≤)7 | CLSI推荐4 | EUCAST 推荐敏感 (≤)5 | ||||
敏感 (≤) | 中介 (=) | 耐药 (≥) | ||||||||||||
异烟肼8 | 0.2 | 0.2 | 0.25/1.0 | 0.1 | 0.1 | 0.1/0.4 | - | 0.1 | 0.125 | 0.12 | - | 0.25 | - | |
链霉素9 | 4.0 | 4.0 | 4.0 | 1.0 | 1.0 | 1.0/4.0 | - | - | - | - | - | - | - | |
乙胺丁醇9 | 2.0 | 2.0 | 2.0 | 5.0 | 5.0 | 5.0/7.5 | - | - | 4.0 | 2.0 | 4.0 | 8.0 | - | |
利福平10 | 40.0 | 40.0 | 40.0 | 1.0 | 0.5* | 1.0 | - | 0.5 | 0.5 | 0.5* | - | 1.0* | - | |
吡嗪酰胺 | - | - | - | 100.0 | 100.0 | 100.0 | - | - | - | - | - | - | - | |
左氧氟沙星 | 2.0* | 2.0* | - | 1.0 | 1.0 | 1.5 | - | 1.0 | 1.0 | - | - | - | - | |
莫西沙星11 | 1.0* | 1.0* | - | 0.25/1.0 | 0.25/1.0 | 0.25/2.0 | - | 1.0 | - | - | - | - | - | |
贝达喹啉 | - | - | - | 1.0* | 1.0* | - | - | 0.25 | 0.125(0.25) | - | - | - | 0.25* | |
利奈唑胺 | - | - | - | 1.0 | 1.0 | 1.0 | - | 1.0 | 1.0(2.0) | - | - | - | - | |
氯法齐明 | - | - | - | 1.0* | 1.0* | - | - | 0.25 | 0.25(0.5) | - | - | - | - | |
德拉马尼 | - | - | - | 0.06* | 0.06* | - | - | 0.06 | 0.06(0.125) | - | - | - | 0.06* | |
阿米卡星 | 30.0 | 30.0 | 30.0 | 1.0 | 1.0 | 1.0 | - | 1.0 | - | - | - | - | - | |
卡那霉素 | 30.0 | 30.0 | 30.0 | 2.5 | 2.5 | 2.5 | - | 4.0 | 4.0 | - | - | - | - | |
氧氟沙星 | 4.0 | - | - | 2.0 | - | - | - | - | - | - | - | - | - | |
卷曲霉素 | 40.0 | 40.0 | 40.0 | 2.5 | 2.5 | 2.5 | - | - | - | - | - | - | - | |
乙硫异烟胺 | 40.0 | 40.0 | 40.0 | 5.0 | 5.0 | - | - | - | 4.0 | - | - | - | - | |
丙硫异烟胺 | 40.0 | 40.0 | 40.0 | 2.5 | 2.5 | - | - | - | - | - | - | - | - | |
对氨基水杨酸 | 1.0 | - | 1.0 | - | - | 4.0 | - | - | - | - | - | - | - | |
环丝氨酸 | -# | -# | -# | - | - | - | - | - | 32.0(64.0) | - | - | - | - | |
普瑞玛尼 | - | - | - | - | - | - | 2.0* | - | - | - | - | - | - |
[1] | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. |
[2] |
Schön T, Matuschek E, Mohamed S, et al. Standards for MIC testing that apply to the majority of bacterial pathogens should also be enforced for Mycobacterium tuberculosis complex. Clin Microbiol Infect, 2019, 25(4):403-405. doi:10.1016/j.cmi.2019.01.019.
doi: 10.1016/j.cmi.2019.01.019 URL |
[3] |
Van Deun A, Aung KJ, Bola V, et al. Rifampin drug resis-tance tests for tuberculosis: challenging the gold standard. J Clin Microbiol, 2013, 51(8):2633-2640. doi:10.1128/JCM.00553-13.
doi: 10.1128/JCM.00553-13 URL |
[4] |
Köser CU, Maurer FP, Kranzer K. Those who cannot remember the past are condemned to repeat it: Drug-susceptibility testing for bedaquiline and delamanid. Int J Infect Dis, 2019, 80S:S32-S35. doi:10.1016/j.ijid.2019.02.027.
doi: 10.1016/j.ijid.2019.02.027 |
[5] |
Schön T, Köser CU, J, et al. What is the role of the EUCAST reference method for MIC testing of the Mycobacterium tuberculosis complex? Clin Microbiol Infect, 2020, 26(11):1453-1455. doi:10.1016/j.cmi.2020.07.037.
doi: 10.1016/j.cmi.2020.07.037 URL |
[6] | Canetti G, Froman S, Grosset J, et al. Mycobacteria: laboratory methods for testing drug susceptibility and resistance. Bull World Health Organ, 1963, 29(5):565-578. |
[7] |
Gupta A, Anupurba S. Detection of drug resistance in Mycobacterium tuberculosis: Methods, principles and applications. Indian J Tuberc, 2015, 62(1):13-22. doi:10.1016/j.ijtb.2015.02.003.
doi: 10.1016/j.ijtb.2015.02.003 URL |
[8] |
Pfyffer GE, Welscher HM, Kissling P, et al. Comparison of the Mycobacteria Growth Indicator Tube (MGIT) with radiometric and solid culture for recovery of acid-fast bacilli. J Clin Microbiol, 1997, 35(2):364-368. doi:10.1128/jcm.35.2.364-368.1997.
doi: 10.1128/jcm.35.2.364-368.1997 pmid: 9003597 |
[9] |
Palomino JC, Traore H, Fissette K, et al. Evaluation of Mycobacteria Growth Indicator Tube (MGIT) for drug susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis, 1999, 3(4):344-348.
pmid: 10206506 |
[10] | World Health Organization. Optimized broth microdilution plate methodology for drug susceptibility testing of Mycobacterium tuberculosis complex. Geneva: World Health Organization, 2022. |
[11] |
夏辉, 郑扬, 宋媛媛. 世界卫生组织《优化肉汤微孔板法结核分枝杆菌复合群药物敏感性试验方法学》解读. 中国防痨杂志, 2022, 44(7):641-645. doi:10.19982/j.issn.1000-6621.20220187.
doi: 10.19982/j.issn.1000-6621.20220187 |
[12] | Clinical and Laboratory Standards Institute. Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes. Wayne: Clinical and Laboratory Standards Institute, 2023. |
[13] |
Ängeby K, Juréen P, Kahlmeter G, et al. Challenging a dogma: antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis. Bull World Health Organ, 2012, 90(9):693-698. doi:10.2471/BLT.11.096644.
doi: 10.2471/BLT.11.096644 URL |
[14] |
Kahlmeter G. The 2014 Garrod Lecture: EUCAST- are we heading towards international agreement? J Antimicrob Chemother, 2015, 70(9):2427-2439. doi:10.1093/jac/dkv145.
doi: 10.1093/jac/dkv145 pmid: 26089441 |
[15] | European Committee on Antimicrobial Susceptibility Testing. EUCAST definitions of clinical breakpoints and epidemiological cut-off values. Växjö: European Committee on Antimicrobial Susceptibility Testing, 2019. |
[16] |
Antimycobacterial Susceptibility Testing Group. Updating the approaches to define susceptibility and resistance to anti-tuberculosis agents: implications for diagnosis and treatment. Eur Respir J, 2022, 59(4):2200166. doi:10.1183/13993003.00166-2022.
doi: 10.1183/13993003.00166-2022 URL |
[17] | Clinical and Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes. 3rd ed. Wayne: Clinical and Laboratory Standards Institute, 2018. |
[18] |
Canetti G. Present aspects of bacterial resistance in tuberculosis. Am Rev Respir Dis, 1965, 92(5):687-703. doi:10.1164/arrd.1965.92.5.687.
doi: 10.1164/arrd.1965.92.5.687 |
[19] |
Kim SJ. Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur Respir J, 2005, 25(3):564-569. doi:10.1183/09031936.05.00111304.
doi: 10.1183/09031936.05.00111304 pmid: 15738303 |
[20] |
Kam KM, Sloutsky A, Yip CW, et al. Determination of critical concentrations of second-line anti-tuberculosis drugs with clinical and microbiological relevance. Int J Tuberc Lung Dis, 2010, 14(3):282-288.
pmid: 20132618 |
[21] |
Schön T, Miotto P, Köser CU, et al. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect, 2017, 23(3):154-160. doi:10.1016/j.cmi.2016.10.022.
doi: 10.1016/j.cmi.2016.10.022 URL |
[22] | World Health Organization. Guidelines for surveillance of drug resistance in tuberculosis, 4th ed. Geneva: World Health Organization, 2009. |
[23] |
Ismail NA, Aono A, Borroni E, et al. A Multimethod, Multicountry Evaluation of Breakpoints for Bedaquiline Resistance Determination. Antimicrob Agents Chemother, 2020, 64(9):e00479-20. doi:10.1128/AAC.00479-20.
doi: 10.1128/AAC.00479-20 |
[24] |
Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection model and mathematical modeling. J Infect Dis, 2004, 190(9):1642-1651. doi:10.1086/424849.
doi: 10.1086/424849 URL |
[25] |
Gumbo T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother, 2010, 54(4):1484-1491. doi:10.1128/AAC.01474-09.
doi: 10.1128/AAC.01474-09 pmid: 20086150 |
[26] |
Liu Y, Moodley M, Pasipanodya JG, et al. Determining the Delamanid Pharmacokinetics/Pharmacodynamics Susceptibility Breakpoint Using Monte Carlo Experiments. Antimicrob Agents Chemother, 2023, 67(4):e0140122. doi:10.1128/aac.01401-22.
doi: 10.1128/aac.01401-22 URL |
[27] |
Alghamdi WA, Al-Shaer MH, An G, et al. Population Pharmacokinetics of Linezolid in Tuberculosis Patients: Dosing Regimen Simulation and Target Attainment Analysis. Antimicrob Agents Chemother, 2020, 64(10):e01174-20. doi:10.1128/AAC.01174-20.
doi: 10.1128/AAC.01174-20 |
[28] | World Health Organization. Technical Report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. Geneva: World Health Organization, 2018. |
[29] | World Health Organization. Technical Report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine). Geneva: World Health Organization, 2021. |
[30] | World Health Organization. Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva: World Health Organization, 2014. |
[31] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization, 2022. |
[32] |
Köser CU, Georghiou SB, Schön T, et al. On the Consequences of Poorly Defined Breakpoints for Rifampin Susceptibility Testing of Mycobacterium tuberculosis Complex. J Clin Microbiol, 2021, 59(4):e02328-20. doi:10.1128/JCM.02328-20.
doi: 10.1128/JCM.02328-20 |
[33] |
Van Deun A, Decroo T, Aung KJM, et al. Mycobacterium tuberculosis borderline rpoB mutations: emerging from the unknown. Eur Respir J, 2021, 58(3):2100783. doi:10.1183/13993003.00783-2021.
doi: 10.1183/13993003.00783-2021 URL |
[34] |
Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis, 2013, 208(9):1464-1473. doi:10.1093/infdis/jit352.
doi: 10.1093/infdis/jit352 pmid: 23901086 |
[35] |
CRyPTIC Consortium. Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M.tuberculosis. Eur Respir J, 2022, 60(4):2200239. doi:10.1183/13993003.00239-2022.
doi: 10.1183/13993003.00239-2022 URL |
[36] |
Mohamed S, Köser CU, Salfinger M, et al. Targeted next-generation sequencing: a Swiss army knife for mycobacterial diagnostics?. Eur Respir J, 2021, 57(3):2004077. doi:10.1183/13993003.04077-2020.
doi: 10.1183/13993003.04077-2020 URL |
[37] |
Schön T, Juréen P, Giske CG, et al. Evaluation of wild-type MIC distributions as a tool for determination of clinical breakpoints for Mycobacterium tuberculosis. J Antimicrob Chemother, 2009, 64(4):786-793. doi:10.1093/jac/dkp262.
doi: 10.1093/jac/dkp262 URL |
[38] |
Domínguez J, Boettger EC, Cirillo D, et al. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement. Int J Tuberc Lung Dis, 2016, 20(1):24-42. doi:10.5588/ijtld.15.0221.
doi: 10.5588/ijtld.15.0221 pmid: 26688526 |
[39] |
Köser CU, Robledo J, Shubladze N, et al. Guidance is needed to mitigate the consequences of analytic errors during antimicrobial susceptibility testing for TB. Int J Tuberc Lung Dis, 2021, 25(10):791-794. doi:10.5588/ijtld.21.0428.
doi: 10.5588/ijtld.21.0428 pmid: 34615575 |
[40] |
Disratthakit A, Prammananan T, Tribuddharat C, et al. Role of gyrB Mutations in Pre-extensively and Extensively Drug-Resistant Tuberculosis in Thai Clinical Isolates. Antimicrob Agents Chemother, 2016, 60(9):5189-5197. doi:10.1128/AAC.00539-16.
doi: 10.1128/AAC.00539-16 pmid: 27297489 |
[41] |
Miotto P, Tessema B, Tagliani E, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J, 2017, 50(6):1701354. doi:10.1183/13993003.01354-2017.
doi: 10.1183/13993003.01354-2017 URL |
[42] | World Health Organization. The use of next-generation sequencing technologies for the detection of mutations associated with drug resistance in Mycobacterium tuberculosis complex: technical guide. Geneva: World Health Organization, 2018. |
[43] |
Köser CU, Cirillo DM, Miotto P. How To Optimally Combine Genotypic and Phenotypic Drug Susceptibility Testing Methods for Pyrazinamide. Antimicrob Agents Chemother, 2020, 64(9):e01003-20. doi:10.1128/AAC.01003-20.
doi: 10.1128/AAC.01003-20 |
[44] | World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. Geneva: World Health Organization, 2021. |
[45] |
Chedore P, Bertucci L, Wolfe J, et al. Potential for erroneous results indicating resistance when using the Bactec MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol, 2010, 48(1):300-301.
doi: 10.1128/JCM.01775-09 pmid: 19923479 |
[46] |
Zhang Y, Permar S, Sun Z. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J Med Microbiol, 2002, 51(1):42-49. doi:10.1099/0022-1317-51-1-42.
doi: 10.1099/0022-1317-51-1-42 pmid: 11800471 |
[47] |
Hoffner S, Angeby K, Sturegård E, et al. Proficiency of drug susceptibility testing of Mycobacterium tuberculosis against pyrazinamide: the Swedish experience. Int J Tuberc Lung Dis, 2013, 17(11):1486-1490. doi:10.5588/ijtld.13.0195.
doi: 10.5588/ijtld.13.0195 pmid: 24125455 |
[48] |
Werngren J, Alm E, Mansjö M. Non-pncA Gene-Mutated but Pyrazinamide-Resistant Mycobacterium tuberculosis: Why Is That?. J Clin Microbiol, 2017, 55(6):1920-1927. doi:10.1128/JCM.02532-16.
doi: 10.1128/JCM.02532-16 pmid: 28404681 |
[49] | European Committee on Antimicrobial Susceptibility Testing. Area of Technical Uncertainty (ATU) in antimicrobial susceptibility testing. Växjö: European Committee on Antimicrobial Susceptibility Testing, 2022. |
[50] | European Committee on Antimicrobial Susceptibility Testing. Redefining susceptibility testing categories S, I and R. Växjö: European Committee on Antimicrobial Susceptibility Testing, 2019. |
[51] | 陈耿, 何宇, 陈勇川, 等. 中国成人肝移植受体微乳化环孢素A吸收期血药浓度与药物暴露量的相关性研究. 中华肝脏病杂志, 2004, 12(6):328-330. |
[52] | World Health Organization. WHO operational handbook on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment, 2022 update. Geneva: World Health Organization, 2022. |
[53] | World Health Organization. Line probe assays for detection of drug-resistant tuberculosis: interpretation and reporting manual for laboratory staff and clinicians. Geneva: World Health Organization, 2022. |
[54] |
Ando H, Miyoshi-Akiyama T, Watanabe S, et al. A silent mutation in mabA confers isoniazid resistance on Mycobacterium tuberculosis. Mol Microbiol, 2014, 91(3):538-547. doi:10.1111/mmi.12476.
doi: 10.1111/mmi.12476 URL |
[55] |
Boeree MJ, Diacon AH, Dawson R, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med, 2015, 191(9):1058-1065. doi:10.1164/rccm.201407-1264OC.
doi: 10.1164/rccm.201407-1264OC URL |
[56] |
Seijger C, Hoefsloot W, Bergsma-de Guchteneire I, et al. High-dose rifampicin in tuberculosis: Experiences from a Dutch tuberculosis centre. PLoS One, 2019, 14(3):e0213718. doi:10.1371/journal.pone.0213718.
doi: 10.1371/journal.pone.0213718 URL |
[57] |
Onorato L, Gentile V, Russo A, et al. Standard versus high dose of rifampicin in the treatment of pulmonary tuberculosis: a systematic review and meta-analysis. Clin Microbiol Infect, 2021, 27(6):830-837. doi:10.1016/j.cmi.2021.03.031.
doi: 10.1016/j.cmi.2021.03.031 URL |
[58] |
Kahlmeter G, Giske CG, Kirn TJ, et al. Point-Counterpoint: Differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute Recommendations for Reporting Antimicrobial Susceptibility Results. J Clin Microbiol, 2019, 57(9):e01129-19. doi:10.1128/JCM.01129-19.
doi: 10.1128/JCM.01129-19 |
[59] |
Blöchliger N, Keller PM, Böttger EC, et al. MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities. J Antimicrob Chemother, 2017, 72(9):2553-2561. doi:10.1093/jac/dkx196.
doi: 10.1093/jac/dkx196 pmid: 28859448 |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[3] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange , Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 243-257. |
[6] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[7] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[8] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group, Combined with HIV/AIDS Patients Group Chinese Antituberculosis Association, Chinese Antituberculosis Association of STD and AIDS Prevention and Control, the Western China Bone Tuberculosis Alliance, the North China Bone the North China Bone. Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 1-11. |
[9] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[10] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[11] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[12] | Chen Shuangshuang, Tian Lili, Wang Nenhan, Yang Xinyu, Zhao Yanfeng, Li Chuanyou, Dai Xiaowei. Analysis of in vitro antibacterial effects of 17 antibiotics against rapidly growing mycobacteria in the Beijing area [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1056-1062. |
[13] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[14] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[15] | Li Zhili, Liu Yuhong. Interpretation of WHO consolidated guidelines on tuberculosis. Module 6: tuberculosis and comorbidities-HIV [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 869-873. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||