Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (1): 102-105.doi: 10.19982/j.issn.1000-6621.20210511
• Review Articles • Previous Articles Next Articles
ZHOU Ting-ting1,2, ZHENG Xiao-man2, OUYANG Jing2, LU Yan-qiu2, CHEN Yao-kai1,3()
Received:
2021-08-24
Online:
2022-01-10
Published:
2021-12-29
Contact:
CHEN Yao-kai
E-mail:yaokaichen@hotmail.com
Supported by:
CLC Number:
ZHOU Ting-ting, ZHENG Xiao-man, OUYANG Jing, LU Yan-qiu, CHEN Yao-kai. Research progress on genes and mechanism of Mycobacterium tuberculosis resistance to pyrazinamide[J]. Chinese Journal of Antituberculosis, 2022, 44(1): 102-105. doi: 10.19982/j.issn.1000-6621.20210511
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20210511
[1] | World Health Organization. Global Tuberculosis Report 2021. Geneva: World Health Organization, 2021. |
[2] |
Kempker RR, Heinrichs MT, Nikolaishvili K, et al. Lung Tissue Concentrations of Pyrazinamide among Patients with Drug-Resistant Pulmonary Tuberculosis. Antimicrob Agents Chemother, 2017, 61(6):e00226-17. doi: 10.1128/AAC.00226-17.0.
doi: 10.1128/AAC.00226-17.0 |
[3] |
Singh R, Dwivedi SP, Gaharwar US, et al. Recent updates on drug resistance in Mycobacterium tuberculosis. J Appl Microbiol, 2020, 128(6):1547-1567. doi: 10.1111/jam.14478.
doi: 10.1111/jam.14478 pmid: 31595643 |
[4] |
Khan MT, Malik SI, Ali S, et al. Pyrazinamide resistance and mutations in pncA among isolates of Mycobacterium tuberculosis from Khyber Pakhtunkhwa, Pakistan. BMC Infect Dis, 2019, 19(1):116. doi: 10.1186/s12879-019-3764-2.
doi: 10.1186/s12879-019-3764-2 URL |
[5] |
Liu W, Chen J, Shen Y, et al. Phenotypic and genotypic characterization of pyrazinamide resistance among multidrug-resis-tant Mycobacterium tuberculosis clinical isolates in Hangzhou, China. Clin Microbiol Infect, 2018, 24(9):e1011-1016. doi: 10.1016/j.cmi.2017.12.012.
doi: 10.1016/j.cmi.2017.12.012 |
[6] |
Dudley MZ, Sheen P, Gilman RH, et al. Detecting Mutations in the Mycobacterium tuberculosis Pyrazinamidase Gene pncA to Improve Infection Control and Decrease Drug Resistance Rates in Human Immunodeficiency Virus Coinfection. Am J Trop Med Hyg, 2016, 95(6):1239-1246. doi: 10.4269/ajtmh.15-0711.
doi: 10.4269/ajtmh.15-0711 URL |
[7] |
Yadon AN, Maharaj K, Adamson JH, et al. A comprehensive characterization of PncA polymorphisms that confer resistance to pyrazinamide. Nat Commun, 2017, 8(1):588. doi: 10.1038/s41467-017-00721-2.
doi: 10.1038/s41467-017-00721-2 pmid: 28928454 |
[8] |
Li K, Yang Z, Gu J, et al. Characterization of pncA Mutations and Prediction of PZA Resistance in Mycobacterium tuberculosis Clinical Isolates From Chongqing, China. Front Microbiol, 2020, 11:594171. doi: 10.3389/fmicb.2020.594171.
doi: 10.3389/fmicb.2020.594171 |
[9] |
Ei PW, Mon AS, Htwe MM, et al. Pyrazinamide resistance and pncA mutations in drug resistant Mycobacterium tuberculosis clinical isolates from Myanmar. Tuberculosis (Edinb), 2020, 125:102013. doi: 10.1016/j.tube.2020.102013.
doi: 10.1016/j.tube.2020.102013 |
[10] |
Naluyange R, Mboowa G, Komakech K, et al. High prevalence of phenotypic pyrazinamide resistance and its association with pncA gene mutations in Mycobacterium tuberculosis isolates from Uganda. PLoS One, 2020, 15(5):e0232543. doi: 10.1371/journal.pone.0232543.
doi: 10.1371/journal.pone.0232543 |
[11] |
Wu X, Lu W, Shao Y, et al. PncA gene mutations in reporting pyrazinamide resistance among the MDR-TB suspects. Infect Genet Evol, 2019, 72:147-150. doi: 10.1016/j.meegid.2018.11.012.
doi: 10.1016/j.meegid.2018.11.012 URL |
[12] |
Katale BZ, Mbelele PM, Lema NA, et al. Whole genome sequencing of Mycobacterium tuberculosis isolates and clinical outcomes of patients treated for multidrug-resistant tuberculosis in Tanzania. BMC Genomics, 2020, 21(1):174. doi: 10.1186/s12864-020-6577-1.
doi: 10.1186/s12864-020-6577-1 URL |
[13] |
Aggarwal M, Singh A, Grover S, et al. Role of pncA gene mutations W68R and W68G in pyrazinamide resistance. J Cell Biochem, 2018, 119(3):2567-2578. doi: 10.1002/jcb.26420.
doi: 10.1002/jcb.26420 pmid: 28980723 |
[14] |
Shi J, Su R, Zheng D, et al. Pyrazinamide Resistance and Mutation Patterns Among Multidrug-Resistant Mycobacterium tuberculosis from Henan Province. Infect Drug Resist, 2020, 13:2929-2941. doi: 10.2147/IDR.S260161.
doi: 10.2147/IDR.S260161 URL |
[15] |
Shi W, Zhang X, Jiang X, et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science, 2011, 333(6049):1630-1632. doi: 10.1126/science.1208813.
doi: 10.1126/science.1208813 URL |
[16] |
Dillon NA, Peterson ND, Feaga HA, et al. Anti-tubercular Activity of Pyrazinamide is Independent of trans-Translation and RpsA. Sci Rep, 2017, 7(1):6135. doi: 10.1038/s41598-017-06415-5.
doi: 10.1038/s41598-017-06415-5 URL |
[17] |
Vallejos-Sanchez K, Lopez JM, Antiparra R, et al. Mycobacterium tuberculosis ribosomal protein S1 (RpsA) and variants with truncated C-terminal end show absence of interaction with pyrazinoic acid. Sci Rep, 2020, 10(1):8356. doi: 10.1038/s41598-020-65173-z.
doi: 10.1038/s41598-020-65173-z pmid: 32433489 |
[18] |
Gopal P, Nartey W, Ragunathan P, et al. Pyrazinoic Acid Inhibits Mycobacterial Coenzyme A Biosynthesis by Binding to Aspartate Decarboxylase PanD. ACS Infect Dis, 2017, 3(11):807-819. doi: 10.1021/acsinfecdis.7b00079.
doi: 10.1021/acsinfecdis.7b00079 URL |
[19] |
Zhang S, Chen J, Shi W, et al. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect, 2013, 2(6):e34. doi: 10.1038/emi.2013.38.
doi: 10.1038/emi.2013.38 |
[20] |
Shi W, Chen J, Feng J, et al. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg Microbes Infect, 2014, 3(8):e58. doi: 10.1038/emi.2014.61.
doi: 10.1038/emi.2014.61 |
[21] |
Gopal P, Sarathy JP, Yee M, et al. Pyrazinamide triggers degradation of its target aspartate decarboxylase. Nat Commun, 2020, 11(1):1661. doi: 10.1038/s41467-020-15516-1.
doi: 10.1038/s41467-020-15516-1 URL |
[22] |
Sun Q, Li X, Perez LM, et al. The molecular basis of pyrazinamide activity on Mycobacterium tuberculosis PanD. Nat Commun, 2020, 11(1):339. doi: 10.1038/s41467-019-14238-3.
doi: 10.1038/s41467-019-14238-3 URL |
[23] |
Pandey B, Grover S, Tyagi C, et al. Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis. Gene, 2016, 581(1):31-42. doi: 10.1016/j.gene.2016.01.024.
doi: 10.1016/j.gene.2016.01.024 URL |
[24] |
Rosen BC, Dillon NA, Peterson ND, et al. Long-Chain Fatty Acyl Coenzyme A Ligase FadD2 Mediates Intrinsic Pyrazinamide Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2017, 61(2):e02130-16. doi: 10.1128/AAC.02130-16.
doi: 10.1128/AAC.02130-16 |
[25] |
Elad N, Baron S, Peleg Y, et al. Structure of Type-I Mycobacterium tuberculosis fatty acid synthase at 3.3Å resolution. Nat Commun, 2018, 9(1):3886. doi: 10.1038/s41467-018-06440-6.
doi: 10.1038/s41467-018-06440-6 URL |
[26] |
Ahmady A, Poolad T, Rafee P, et al. Study of pyrazinamidase structural changes in pyrazinamide resistant and susceptible isolates of Mycobacterium tuberculosis. Tuberk Toraks, 2013, 61(2):110-114. doi: 10.5578/tt.3888.
doi: 10.5578/tt.3888 URL |
[27] |
Sayahi H, Pugliese KM, Zimhony O, et al. Analogs of the antituberculous agent pyrazinamide are competitive inhibitors of NADPH binding to M.tuberculosis fatty acid synthase I. Chem Biodivers, 2012, 9(11):2582-2596. doi: 10.1002/cbdv.201200291.
doi: 10.1002/cbdv.201200291 URL |
[28] |
Werngren J, Alm E, Mansjo M. Non-pncA Gene-Mutated but Pyrazinamide-Resistant Mycobacterium tuberculosis: Why Is That? J Clin Microbiol, 2017, 55(6):1920-1927. doi: 10.1128/JCM.02532-16.
doi: 10.1128/JCM.02532-16 pmid: 28404681 |
[29] |
Tan Y, Hu Z, Zhang T, et al. Role of pncA and rpsA gene sequencing in detection of pyrazinamide resis-tance in Mycobacterium tuberculosis isolates from southern China. J Clin Microbiol, 2014 52(1):291-297. doi: 10.1128/JCM.01903-13.
doi: 10.1128/JCM.01903-13 URL |
[1] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[2] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[3] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[6] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[7] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[8] | Li Xuelian, Zhang Hongyan, Wang Jun, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan. Safety of extended delamanid use in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 164-168. |
[9] | Xu Zian, Pu Feifei, Feng Jing, Xia Ping. Research progress of high-throughput sequencing technology in the diagnosis and treatment of osteoarticular tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 224-230. |
[10] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[11] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[12] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[13] | Geng Zimei, Wang Chaohong, Long Sibo, Zheng Maike, Shi Yiheng, Sun Yong, Zhao Yan, Wang Guirong. Analysis of bacteriological positivity and rifampicin resistance in patients with severe pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1050-1055. |
[14] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[15] | Wang Fei, Hua Duo, Guo Jianjian, Liu Chang, Han Lu, Ren Yi. Characteristic analysis of non-tuberculous mycobacterial pulmonary disease patients in Wuhan area from 2021 to 2023 [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1069-1076. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||