Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (9): 952-960.doi: 10.3969/j.issn.1000-6621.2021.09.016
• Original Articles • Previous Articles Next Articles
ZHOU Ying-yu, FU Lei, ZHANG Wei-yan, WANG Bin, CHEN Xi, LU Yu(), CHEN Xiao-you(
)
Received:
2021-05-08
Online:
2021-09-10
Published:
2021-09-07
Contact:
LU Yu,CHEN Xiao-you
E-mail:luyu4876@hotmail.com;chenxy1998@hotmail.com
ZHOU Ying-yu, FU Lei, ZHANG Wei-yan, WANG Bin, CHEN Xi, LU Yu, CHEN Xiao-you. Analysis and comparative study on the virulence of several drug-resistant Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2021, 43(9): 952-960. doi: 10.3969/j.issn.1000-6621.2021.09.016
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.09.016
菌株 | 耐药类型 | Lzd(μg/ml) | PA-824(μg/ml) | PBTZ-169(ng/ml) |
---|---|---|---|---|
H37Rv | - | 0.25 | 0.07 | 0.31 |
H37Ra | - | 0.06 | 0.03 | 0.22 |
L1 | 单耐Lzd | 13.59a | 0.15 | - |
P1 | 单耐PA-824 | 0.22 | >20.00a | - |
PL1 | 同时耐Lzd和PA-824 | 12.37a | >20.00a | - |
PL2 | 同时耐Lzd和PA-824 | 10.93a | >20.00a | - |
PL3 | 同时耐Lzd和PA-824 | 8.51a | >20.00a | - |
169-1 | 单耐PBTZ-169 | - | - | 6.11a |
169-2 | 单耐PBTZ-169 | - | - | >400.00a |
169-3 | 单耐PBTZ-169 | - | - | >400.00a |
菌株 | 第0天 | 第3天 | 第7天 | 第14天 | 第21天 | 第28天 |
---|---|---|---|---|---|---|
H37Rv | 5.148±0.121 | 6.856±0.084 | 6.675±0.065 | 7.044±0.264 | 7.370±0.142 | 7.256±0.113 |
H37Ra | 5.090±0.079 | 6.556±0.126 | 6.439±0.239 | 6.694±0.058 | 7.027±0.046 | 7.137±0.221 |
L1 | 5.029±0.011 | 6.077±0.031 | 6.854±0.072 | 7.118±0.035 | 7.233±0.021 | 7.011±0.161 |
P1 | 5.128±0.070 | 5.671±0.093 | 6.826±0.090 | 7.016±0.039 | 7.221±0.026 | 7.255±0.037 |
PL1 | 5.039±0.036 | 5.951±0.024 | 7.019±0.026 | 7.113±0.024 | 7.155±0.043 | 7.260±0.074 |
PL2 | 5.008±0.030 | 6.259±0.027 | 7.159±0.068 | 7.103±0.009 | 7.423±0.002 | 7.212±0.085 |
PL3 | 5.018±0.240 | 6.223±0.037 | 6.892±0.087 | 6.841±0.044 | 7.126±0.026 | 7.430±0.126 |
169-1 | 5.013±0.039 | 6.503±0.175 | 6.969±0.276 | 7.190±0.082 | 7.783±0.147 | 7.287±0.081 |
169-2 | 5.079±0.115 | 6.598±0.069 | 6.826±0.127 | 7.015±0.065 | 7.537±0.168 | 7.327±0.261 |
169-3 | 5.227±0.077 | 6.865±0.174 | 7.024±0.082 | 6.948±0.059 | 7.483±0.072 | 7.270±0.201 |
15833 | 5.112±0.097 | 6.207±0.019 | 6.998±0.069 | 7.328±0.073 | 7.530±0.078 | 7.470±0.115 |
16030 | 5.363±0.044 | 6.146±0.036 | 7.243±0.038 | 7.428±0.036 | 7.429±0.062 | 7.183±0.154 |
17080 | 5.502±0.394 | 6.361±0.019 | 7.125±0.020 | 7.409±0.038 | 7.709±0.142 | 7.223±0.386 |
30744 | 5.246±0.205 | 6.411±0.108 | 6.243±0.074 | 6.548±0.103 | 6.663±0.230 | 6.660±0.104 |
菌株种类 | CFU计数 (log10CFU/ml, | t值 | P值 |
---|---|---|---|
H37Rv | 6.207±0.028 | - | - |
L1 | 6.134±0.057 | -1.506 | 0.207 |
P2 | 6.125±0.095 | 1.144 | 0.316 |
PL1 | 5.763±0.197 | 4.796 | 0.009 |
PL2 | 5.907±0.053 | 7.042 | 0.020 |
PL3 | 5.661±0.083 | 9.113 | 0.001 |
169-1 | 5.800±0.385 | 1.501 | 0.271 |
169-2 | 5.933±0.221 | 1.710 | 0.225 |
169-3 | 5.938±0.147 | 2.541 | 0.064 |
15833 | 5.180±0.074 | 17.932 | <0.01 |
16030 | 5.571±0.029 | 12.758 | <0.01 |
30744 | 5.550±0.073 | 12.034 | <0.01 |
17080 | 5.446±0.099 | 10.241 | 0.001 |
H37Ra | 4.634±0.286 | 7.715 | 0.020 |
菌株种类 | 吸光度值(A490) 比值( | t值 | P值 |
---|---|---|---|
H37Rv | 0.958±0.025 | - | - |
L1 | 0.329±0.015 | 44.005 | <0.01 |
P2 | 0.483±0.017 | 32.698 | <0.01 |
PL1 | 0.328±0.046 | 27.713 | <0.01 |
PL2 | 0.455±0.075 | 15.171 | <0.01 |
PL3 | 0.283±0.041 | 31.798 | <0.01 |
169-1 | 0.258±0.044 | 31.472 | <0.01 |
169-2 | 0.374±0.080 | 16.515 | <0.01 |
169-3 | 0.311±0.097 | 15.570 | <0.01 |
15833 | 0.252±0.039 | 27.269 | <0.01 |
16030 | 0.412±0.078 | 16.788 | <0.01 |
30744 | 0.247±0.022 | 38.244 | <0.01 |
17080 | 0.358±0.054 | 24.238 | <0.01 |
H37Ra | 0.233±0.009 | 54.247 | <0.01 |
组别 | 15833 | 16030 | 30744 | 17080 | ||||
---|---|---|---|---|---|---|---|---|
χ2值 | P值 | χ2值 | P值 | χ2值 | P值 | χ2值 | P值 | |
H37Rv | 25.721 | 0.000 | 25.721 | 0.000 | 25.721 | 0.000 | 22.208 | 0.000 |
H37Ra | 26.767 | 0.000 | 26.134 | 0.000 | 14.488 | 0.000 | 25.545 | 0.000 |
15833 | - | - | 1.185 | 0.276 | 22.557 | 0.000 | 7.704 | 0.006 |
16030 | 1.185 | 0.276 | - | - | 25.011 | 0.000 | 8.974 | 0.003 |
30744 | 22.557 | 0.000 | 25.011 | 0.000 | - | - | 11.240 | 0.001 |
17080 | 7.704 | 0.006 | 8.974 | 0.003 | 11.240 | 0.001 | - | - |
组别 | L1 | P1 | PL1 | PL2 | PL3 | 169-1 | 169-2 | 169-3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2值 | P值 | χ2值 | P值 | χ2值 | P值 | χ2值 | P值 | χ2值 | P值 | χ2值 | P值 | χ2值 | P值 | χ2值 | P值 | ||
H37Rv | 25.721 | 0.000 | 4.602 | 0.032 | 25.721 | 0.000 | 21.149 | 0.000 | 25.721 | 0.000 | 25.721 | 0.000 | 25.721 | 0.000 | 23.868 | 0.000 | |
H37Ra | 27.212 | 0.000 | 26.103 | 0.000 | 5.223 | 0.022 | 26.769 | 0.000 | 7.703 | 0.006 | 27.039 | 0.000 | 17.607 | 0.000 | 26.145 | 0.000 | |
L1 | - | - | 14.175 | 0.000 | 15.402 | 0.000 | 0.002 | 0.963 | 15.098 | 0.000 | 0.439 | 0.507 | 2.144 | 0.143 | 0.484 | 0.487 | |
P1 | 14.175 | 0.000 | - | - | 26.103 | 0.000 | 15.980 | 0.000 | 26.103 | 0.000 | 18.040 | 0.000 | 17.070 | 0.000 | 14.357 | 0.000 | |
PL1 | 15.402 | 0.000 | 26.103 | 0.000 | - | - | 21.881 | 0.000 | 0.192 | 0.661 | 16.684 | 0.000 | 6.905 | 0.009 | 26.145 | 0.000 | |
PL2 | 0.002 | 0.963 | 15.980 | 0.000 | 21.881 | 0.000 | - | - | 19.102 | 0.000 | 0.208 | 0.648 | 1.475 | 0.225 | 4.356 | 0.037 | |
PL3 | 15.098 | 0.000 | 26.103 | 0.000 | 0.192 | 0.661 | 19.102 | 0.000 | - | - | 16.830 | 0.000 | 5.352 | 0.021 | 23.622 | 0.000 | |
169-1 | 0.439 | 0.507 | 18.040 | 0.000 | 16.684 | 0.000 | 0.208 | 0.648 | 16.830 | 0.000 | - | - | 1.145 | 0.285 | 1.672 | 0.196 | |
169-2 | 2.144 | 0.143 | 17.070 | 0.000 | 6.905 | 0.009 | 1.475 | 0.225 | 5.352 | 0.021 | 1.145 | 0.285 | - | - | 3.600 | 0.058 | |
169-3 | 0.484 | 0.487 | 14.357 | 0.000 | 26.145 | 0.000 | 4.356 | 0.037 | 23.622 | 0.000 | 1.672 | 0.196 | 3.600 | 0.058 | - | - |
[1] | World Health Organization. Global tuberculosis report 2020. Geneva:World Health Organization, 2020. |
[2] |
Patel R. Biofilms and antimicrobial resistance. Clin Orthop Relat Res, 2005,(437):41-47. doi: 10.1097/01.blo.0000175714.68624.74.
doi: 10.1097/01.blo.0000175714.68624.74 |
[3] |
Seral C, Van Bambeke F, Tulkens PM. Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Antimicrob Agents Chemother, 2003, 47(7):2283-2292. doi: 10.1128/aac.47.7.2283-2292.2003.
doi: 10.1128/aac.47.7.2283-2292.2003 URL |
[4] |
Martinot AJ, Blass E, Yu J, et al. Protective efficacy of an attenuated Mtb ΔLprG vaccine in mice. PLoS Pathogens, 2020, 16(12):e1009096. doi: 10.1371/journal.ppat.1009096.
doi: 10.1371/journal.ppat.1009096 pmid: 33315936 |
[5] |
刘毅, 张亚莉, 张旭霞, 等. 结核分枝杆菌感染和免疫逃逸机制研究进展. 中华微生物学和免疫学杂志, 2015, 35(5):398-400. doi: 10.3760/cma.j.issn.0254-5101.2015.05.015.
doi: 10.3760/cma.j.issn.0254-5101.2015.05.015 |
[6] |
Lye DC, Earnest A, Ling ML, et al. The impact of multidrug resistance in healthcare-associated and nosocomial Gram-negative bacteraemia on mortality and length of stay: cohort study. Clin Microbiol Infect, 2012, 18(5):502-508. doi: 10.1111/j.1469-0691.2011.03606.x.
doi: 10.1111/j.1469-0691.2011.03606.x URL |
[7] |
Pym AS, Saint-Joanis B, Cole ST. Effect of katG Mutations on the Virulence of Mycobacterium tuberculosis and the Implication for Transmission in Humans. Infect Immun, 2002, 70(9):4955-4960. doi: 10.1128/IAI.70.9.4955-4960.2002.
doi: 10.1128/IAI.70.9.4955-4960.2002 URL |
[8] |
胡明豪, 徐建, 王彬, 等. 结核分枝杆菌对PA-824耐药的体外诱导及稳定性研究. 中国抗生素杂志, 2017, 42(2):144-148. doi: 10.3969/j.issn.1001-8689.2017.02.012.
doi: 10.3969/j.issn.1001-8689.2017.02.012 |
[9] |
Butler RE, Brodin P, Jang J, et al. The balance of apoptotic and necrotic cell death in Mycobacterium tuberculosis infected macrophages is not dependent on bacterial virulence. PLoS One, 2012, 7(10):e47573. doi: 10.1371/journal.pone.0047573.
doi: 10.1371/journal.pone.0047573 URL |
[10] |
Danelishvili L, McGarvey J, Li YJ, et al. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol, 2003, 5(9):649-660. doi: 10.1046/j.1462-5822.2003.00312.x.
doi: 10.1046/j.1462-5822.2003.00312.x pmid: 12925134 |
[11] |
Pedroza-Roldán C, Marquina-Castillo B, Mata-Espinosa D, et al. BCG constitutively expressing the adenylyl cyclase encoded by Rv2212 increases its immunogenicity and reduces replication of M.tuberculosis in lungs of BALB/c mice. Tuberculosis (Edinb), 2018, 113:19-25. doi: 10.1016/j.tube.2018.08.012.
doi: 10.1016/j.tube.2018.08.012 URL |
[12] |
Derrick SC, Yang AL, Morris SL. A polyvalent DNA vaccine expressing an ESAT6-Ag85B fusion protein protects mice against a primary infection with Mycobacterium tuberculosis and boosts BCG-induced protective immunity. Vaccine, 2004, 23(6):780-788.
pmid: 15542202 |
[13] |
Miotto P, Zhang Y, Cirillo DM, et al. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology, 2018, 23(12):1098-1113. doi: 10.1111/resp.13393.
doi: 10.1111/resp.13393 pmid: 30189463 |
[14] |
Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev, 2005, 18(1):81-101. doi: 10.1128/CMR.18.1.81-101.2005.
doi: 10.1128/CMR.18.1.81-101.2005 pmid: 15653820 |
[15] |
Manganelli R, Provvedi R, Rodrigue S, et al. Sigma factors and global gene regulation in Mycobacterium tuberculosis. J Bacteriol, 2004, 186(4):895-902. doi: 10.1128/jb.186.4.895-902.2004.
doi: 10.1128/JB.186.4.895-902.2004 pmid: 14761983 |
[16] |
Gagneux S, Long CD, Small PM, et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science, 2006, 312(5782):1944-1946. doi: 10.1126/science.1124410.
doi: 10.1126/science.1124410 URL |
[17] |
Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun, 2002, 70(9):4955-4960. doi: 10.1128/iai.70.9.4955-4960.2002.
doi: 10.1128/iai.70.9.4955-4960.2002 URL |
[18] |
Cohen T, Becerra MC, Murray MB. Isoniazid resistance and the future of drug-resistant tuberculosis. Microb Drug Resist, 2004, 10(4):280-285. doi: 10.1089/mdr.2004.10.280.
doi: 10.1089/mdr.2004.10.280 pmid: 15650371 |
[19] |
Casali N, Nikolayevskyy V, Balabanova Y, et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet, 2014, 46(3):279-286. doi: 10.1038/ng.2878.
doi: 10.1038/ng.2878 URL |
[20] |
de Vos M, Müller B, Borrell S, et al. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother, 2013, 57(2):827-832. doi: 10.1128/AAC.01541-12.
doi: 10.1128/AAC.01541-12 pmid: 23208709 |
[21] |
Comas I, Borrell S, Roetzer A, et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet, 2011, 44(1):106-110. doi: 10.1038/ng.1038.
doi: 10.1038/ng.1038 URL |
[22] |
Dey R, Nandi S, Samadder A, et al. Exploring the Potential Inhibition of Candidate Drug Molecules for Clinical Investigation Based on their Docking or Crystallographic Analyses against M.tuberculosis Enzyme Targets. Curr Top Med Chem, 2020, 20(29):2662-2680. doi: 10.2174/1568026620666200903163921.
doi: 10.2174/1568026620666200903163921 URL |
[23] |
Briffotaux J, Huang W, Wang X, et al. MmpS5/MmpL5 as an efflux pump in Mycobacterium species. Tuberculosis (Edinb), 2017, 107:13-19. doi: 10.1016/j.tube.2017.08.001.
doi: 10.1016/j.tube.2017.08.001 URL |
[24] |
Dookie N, Rambaran S, Padayatchi N, et al. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother, 2018, 73(5):1138-1151. doi: 10.1093/jac/dkx506.
doi: 10.1093/jac/dkx506 URL |
[25] |
Weinreich DM, Watson RA, Chao L. Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution, 2005, 59(6):1165-1174.
pmid: 16050094 |
[26] |
Zur WP, Kouyos R, Engelstädter J, et al. Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infect Dis, 2011, 11(3):236-247. doi: 10.1016/S1473-3099(10)70264-4.
doi: 10.1016/S1473-3099(10)70264-4 URL |
[27] |
Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe, 2008, 3(6):399-407. doi: 10.1016/j.chom.2008.05.006.
doi: 10.1016/j.chom.2008.05.006 pmid: 18541216 |
[28] |
Collins DM. In search of tuberculosis virulence genes. Trends Microbiol, 1996, 4(11):426-430. doi: 10.1016/0966-842x(96)10066-4.
doi: 10.1016/0966-842x(96)10066-4 pmid: 8950811 |
[29] |
Lee JH, Ammerman NC, Nolan S, et al. Isoniazid resistance without a loss of fitness in Mycobacterium tuberculosis. Nat Commun, 2012, 3:753. doi: 10.1038/ncomms1724.
doi: 10.1038/ncomms1724 URL |
[30] |
Danelishvili L, McGarvey J, Li YJ, et al. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol, 2003, 5(9):649-660. doi: 10.1046/j.1462-5822.2003.00312.x.
doi: 10.1046/j.1462-5822.2003.00312.x pmid: 12925134 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Yan Guangxuan, Wang Xueyu, Wang Yujin, Lan Tinglong, Nie Wenjuan. Diagnostic value of using metagenomic second-generation sequencing on suspected osteoarticular tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 175-180. |
[7] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[8] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[9] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[10] | Chen Shuangshuang, Tian Lili, Wang Nenhan, Yang Xinyu, Zhao Yanfeng, Li Chuanyou, Dai Xiaowei. Analysis of in vitro antibacterial effects of 17 antibiotics against rapidly growing mycobacteria in the Beijing area [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1056-1062. |
[11] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[12] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[13] | Wang Biao, Liu Yuhong, Sun Yuxian, Zhang Lijie, Li Zhili, Shu Wei. Investigation and analysis of laboratory diagnostic capabilities in tuberculosis-designated hospitals in China [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1089-1097. |
[14] | Xue Yi, Liang Qian, Qi Haoran, Liang Ruixia, Huang Hairong. Reliability analysis of rifampicin-resistance detected by different diagnostics as a predictor for multidrug-resistant tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 892-896. |
[15] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||