Chinese Journal of Antituberculosis ›› 2020, Vol. 42 ›› Issue (11): 1250-1253.doi: 10.3969/j.issn.1000-6621.2020.11.019
• Review Articles • Previous Articles Next Articles
LI Ting, FAN Yun-fan, FU Ying-mei()
Received:
2020-06-23
Online:
2020-11-10
Published:
2020-11-13
Contact:
FU Ying-mei
E-mail:fuyingmei@hrbmu.edu.cn
LI Ting, FAN Yun-fan, FU Ying-mei. Research progress of extracellular RNA of Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(11): 1250-1253. doi: 10.3969/j.issn.1000-6621.2020.11.019
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2020.11.019
[1] |
Srinivasan S, Yeri A, Cheah PS, et al. Small RNA Sequencing across Diverse Biofluids Identifies Optimal Methods for exRNA Isolation. Cell, 2019,177(2):446-462.e16. doi: 10.1016/j.cell.2019.03.024.
doi: 10.1016/j.cell.2019.03.024 URL pmid: 30951671 |
[2] |
Max KEA, Bertram K, Akat KM, et al. Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc Natl Acad Sci U S A, 2018,115(23):E5334-5343. doi: 10.1073/pnas.1714397115.
doi: 10.1073/pnas.1714397115 URL pmid: 29777089 |
[3] |
Yan Z, Zhou Z, Wu Q, et al. Presymptomatic Increase of an Extracellular RNA in Blood Plasma Associates with the Deve-lopment of Alzheimer’s Disease. Curr Biol, 2020,30(10):1771-1782.e3. doi: 10.1016/j.cub.2020.02.084.
doi: 10.1016/j.cub.2020.02.084 URL pmid: 32220323 |
[4] | Lee MY, Baxter D, Scherler K, et al. Distinct Profiles of Cell-Free MicroRNAs in Plasma of Veterans with Post-Traumatic Stress Disorder. J Clin Med, 2019,8(7):963. doi: 10.3390/jcm8070963. |
[5] | Tapparo M, Bruno S, Collino F, et al. Renal Regenerative Potential of Extracellular Vesicles Derived from miRNA-Engineered Mesenchymal Stromal Cells. Int J Mol Sci, 2019,20(10):2381. doi: 10.3390/ijms20102381. |
[6] | Lee HJ. Microbial extracellular RNAs and their roles in human diseases. Exp Biol Med (Maywood), 2020,245(10):845-850. doi: 10.1177/1535370220923585. |
[7] |
Stroun M, Anker P, Beljanski M, et al. Presence of RNA in the nucleoprotein complex spontaneously released by human lymphocytes and frog auricles in culture. Cancer Res, 1978,38(10):3546-3554.
URL pmid: 688240 |
[8] |
Rappl G, Hasselmann DO, Rössler M, et al. Detection of tumor-associated circulating mRNA in patients with disseminated malignant melanoma. Ann N Y Acad Sci, 2001,945:189-191.
URL pmid: 11708477 |
[9] |
El-Hefnawy T, Raja S, Kelly L, et al. Characterization of amplifiable, circulating RNA in plasma and its potential as a tool for cancer diagnostics. Clin Chem, 2004,50(3):564-573. doi: 10.1373/clinchem.2003.028506.
doi: 10.1373/clinchem.2003.028506 URL pmid: 14718398 |
[10] |
Obregón-Henao A, Duque-Correa MA, Rojas M, et al. Stable extracellular RNA fragments of Mycobacterium tuberculosis induce early apoptosis in human monocytes via a caspase-8 dependent mechanism. PLoS One, 2012,7(1):e29970. doi: 10.1371/journal.pone.002997.0.
doi: 10.1371/journal.pone.0029970 URL pmid: 22253841 |
[11] |
Singh PP, Li L, Schorey JS. Exosomal RNA from Mycobacterium tuberculosis-Infected Cells Is Functional in Recipient Macrophages. Traffic, 2015,16(6):555-571. doi: 10.1111/tra.12278.
URL pmid: 25753779 |
[12] |
Lv L, Li C, Zhang X, et al. RNA Profiling Analysis of the Serum Exosomes Derived from Patients with Active and Latent Mycobacterium tuberculosis Infection. Front Microbiol, 2017,8:1051. doi: 10.3389/fmicb.2017.01051.
doi: 10.3389/fmicb.2017.01051 URL pmid: 28659881 |
[13] |
Fu Y, Li W, Wu Z, et al. Detection of mycobacterial small RNA in the bacterial culture supernatant and plasma of patients with active tuberculosis. Biochem Biophys Res Commun, 2018,503(2):490-494. doi: 10.1016/j.bbrc.2018.04.165.
doi: 10.1016/j.bbrc.2018.04.165 URL pmid: 29689271 |
[14] | Chakrabarty S, Kumar A, Raviprasad K, et al. Host and MTB genome encoded miRNA markers for diagnosis of tuberculosis. Tuberculosis (Edinb), 2019,116:37-43. doi: 10.1016/j.tube.2019.04.002. |
[15] |
Cheng Y, Schorey JS. Mycobacterium tuberculosis-induced IFN-β production requires cytosolic DNA and RNA sensing pathways. J Exp Med, 2018,215(11):2919-2935. doi: 10.1084/jem.20180508.
URL pmid: 30337468 |
[16] |
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol, 2015,13(10):605-619. doi: 10.1038/nrmicro3525.
doi: 10.1038/nrmicro3525 URL pmid: 26373371 |
[17] |
Brown L, Wolf JM, Prados-Rosales R, et al. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol, 2015,13(10):620-630. doi: 10.1038/nrmicro3480.
doi: 10.1038/nrmicro3480 URL pmid: 26324094 |
[18] |
van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol, 2018,19(4):213-228. doi: 10.1038/nrm.2017.125.
doi: 10.1038/nrm.2017.125 URL pmid: 29339798 |
[19] |
Han EC, Choi SY, Lee Y, et al. Extracellular RNAs in periodontopathogenic outer membrane vesicles promote TNF-α production in human macrophages and cross the blood-brain barrier in mice. FASEB J, 2019,33(12):13412-13422. doi: 10.1096/fj.201901575R.
doi: 10.1096/fj.201901575R URL pmid: 31545910 |
[20] |
Langlete P, Krabberød AK, Winther-Larsen HC. Vesicles From Vibrio cholerae Contain AT-Rich DNA and Shorter mRNAs That Do Not Correlate With Their Protein Products. Front Microbiol, 2019,10:2708. doi: 10.3389/fmicb.2019.02708.
URL pmid: 31824470 |
[21] |
Cooke AC, Nello AV, Ernst RK, et al. Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis. PLoS One, 2019,14(2):e0212275. doi: 10.1371/journal.pone.0212275.
doi: 10.1371/journal.pone.0212275 URL pmid: 30763382 |
[22] |
Dauros Singorenko P, Chang V, Whitcombe A, et al. Isolation of membrane vesicles from prokaryotes: a technical and biolo-gical comparison reveals heterogeneity. J Extracell Vesicles, 2017,6(1):1324731. doi: 10.1080/20013078.2017.1324731.
doi: 10.1080/20013078.2017.1324731 URL pmid: 28717421 |
[23] |
Lee J, Kim SH, Choi DS, et al. Proteomic analysis of extracellular vesicles derived from Mycobacterium tuberculosis. Proteomics, 2015,15(19):3331-3337. doi: 10.1002/pmic.201500037.
doi: 10.1002/pmic.201500037 URL pmid: 26201501 |
[24] |
Prados-Rosales R, Baena A, Martinez LR, et al. Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice. J Clin Invest, 2011,121(4):1471-1483. doi: 10.1172/JCI44261.
doi: 10.1172/JCI44261 URL pmid: 21364279 |
[25] |
Cheng Y, Schorey JS. Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing. EMBO Rep, 2019,20(3):e46613. doi: 10.15252/embr.201846613.
URL pmid: 30683680 |
[26] |
Poirier V, Bach H, Av-Gay Y. Mycobacterium tuberculosis promotes anti-apoptotic activity of the macrophage by PtpA protein-dependent dephosphorylation of host GSK3α. J Biol Chem, 2014,289(42):29376-29385. doi: 10.1074/jbc.M114.582502.
doi: 10.1074/jbc.M114.582502 URL pmid: 25187516 |
[27] |
Zhang Y, Liu Y, Liu H, et al. Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci, 2019,9:19. doi: 10.1186/s13578-019-0282-2.
URL pmid: 30815248 |
[28] | Brouwers JF, Aalberts M, Jansen JW, et al. Distinct lipid compositions of two types of human prostasomes. Proteomics, 2013,13(10/11):1660-1666. doi: 10.1002/pmic.201200348. |
[29] |
Conde-Vancells J, Rodriguez-Suarez E, Embade N, et al. Chara-cterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res, 2008,7(12):5157-5166. doi: 10.1021/pr8004887.
doi: 10.1021/pr8004887 URL pmid: 19367702 |
[30] |
Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007,9(6):654-659. doi: 10.1038/ncb1596.
doi: 10.1038/ncb1596 URL pmid: 17486113 |
[31] |
Yamashiro LH, Oliveira SC, Báfica A. Innate immune sensing of nucleic acids from mycobacteria. Microbes Infect, 2014,16(12):991-997. doi: 10.1016/j.micinf.2014.09.006.
URL pmid: 25284681 |
[32] |
Tan X, Sun L, Chen J, et al. Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Annu Rev Microbiol, 2018,72:447-478. doi: 10.1146/annurev-micro-102215-095605.
doi: 10.1146/annurev-micro-102215-095605 URL pmid: 30200854 |
[33] |
Wassermann R, Gulen MF, Sala C, et al. Mycobacterium tuberculosis Differentially Activates cGAS- and Inflammasome-Dependent Intracellular Immune Responses through ESX-1. Cell Host Microbe, 2015,17(6):799-810. doi: 10.1016/j.chom.2015.05.003.
doi: 10.1016/j.chom.2015.05.003 URL pmid: 26048138 |
[34] |
McNab FW, Ewbank J, Rajsbaum R, et al. TPL-2-ERK1/2 signaling promotes host resistance against intracellular bacterial infection by negative regulation of type I IFN production. J Immunol, 2013,191(4):1732-1743. doi: 10.4049/jimmunol.1300146.
doi: 10.4049/jimmunol.1300146 URL pmid: 23842752 |
[35] |
Abdalla AE, Ejaz H, Mahjoob MO, et al. Intelligent Mechanisms of Macrophage Apoptosis Subversion by Mycobacterium. Pathogens, 2020,9(3):218. doi: 10.3390/pathogens9030218.
doi: 10.3390/pathogens9030218 URL |
[36] |
Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science, 1990,247(4949 Pt 1):1465-1468. doi: 10.1126/science.1690918.
doi: 10.1126/science.1690918 URL pmid: 1690918 |
[37] |
Edwards DK, Jasny E, Yoon H, et al. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J Transl Med, 2017,15(1):1. doi: 10.1186/s12967-016-1111-6.
doi: 10.1186/s12967-016-1111-6 URL pmid: 28049494 |
[38] |
Maruggi G, Chiarot E, Giovani C, et al. Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens. Vaccine, 2017,35(2):361-368. doi: 10.1016/j.vaccine.2016.11.040.
doi: 10.1016/j.vaccine.2016.11.040 URL pmid: 27939014 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange , Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 243-257. |
[6] | Duan Hongfei, Tao Yong. Interpretation of social organization standard of Diagnosis Specification of Intraocular Tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 258-261. |
[7] | Zhu Jiankun, Meng Qian, Kong Kangbao, Jin Feng. The value of pneumonectomy in the treatment of pulmonary mucormycosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 274-281. |
[8] | He Zhongliang, Xu Weihua, Xin Shunxin, Chen Guoxing, He Xueming, Wang Lei. The application value of individualized precision treatment for closure of bronchopleural fistula after lung cancer resection surgery [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 282-286. |
[9] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[10] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[11] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[12] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[13] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[14] | Qiu Yong, Quan Zhuo, Qu Rong, Tian Fajun, Li Meng, Wang Gengsheng, Wang Ya, Guo Mingcheng, Gao Qian. Evaluation of different tuberculosis diagnostic tools for detecting patients in a primary-level clinic in rural China: a real-world retrospective study [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 181-188. |
[15] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||