Chinese Journal of Antituberculosis ›› 2018, Vol. 40 ›› Issue (2): 177-182.doi: 10.3969/j.issn.1000-6621.2018.02.013
• Original Articles • Previous Articles Next Articles
Da-mian ZHU,Dai-yu HU,Jie LIU,Yu PANG,Ming LUO,Jing SHEN,Lin. CHEN()
Received:
2017-04-24
Online:
2018-02-10
Published:
2018-03-14
Da-mian ZHU,Dai-yu HU,Jie LIU,Yu PANG,Ming LUO,Jing SHEN,Lin. CHEN. Analysis of mutation in pyrazinamide-resistance gene among the multidrug-resistant Mycobacterium tuberculosis strains isolated from Chongqing municipality[J]. Chinese Journal of Antituberculosis, 2018, 40(2): 177-182. doi: 10.3969/j.issn.1000-6621.2018.02.013
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2018.02.013
影响因素 | 检测菌株 [株(构成比,%)] | PZA耐药 [株(构成比,%)] | PZA敏感 [株(构成比,%)] | χ2值 | P值 | OR(95%CI)值 |
---|---|---|---|---|---|---|
性别 | 1.14 | 0.285 | ||||
男 | 80(60.2) | 47(56.6) | 33(66.0) | 0.67(0.33~1.39) | ||
女 | 53(39.8) | 36(43.4) | 17(34.0) | 1.00 | ||
年龄(岁) | 4.32 | 0.116 | ||||
<30 | 31(23.3) | 18(21.7) | 13(26.0) | 1.00 | ||
30~59 | 80(60.2) | 55(66.3) | 25(50.0) | 1.59(0.68~3.74) | ||
≥60 | 22(16.5) | 10(12.0) | 12(24.0) | 0.60(0.20~1.81) | ||
治疗史 | 10.14 | 0.001 | ||||
初治 | 49(36.8) | 22(26.5) | 27(54.0) | 1.00 | ||
复治 | 84(63.2) | 61(73.5) | 23(46.0) | 3.26(1.55~6.82) |
核苷酸位点 | 核苷酸置换 | 氨基酸位点 | 氨基酸改变类型 | 菌株数 |
---|---|---|---|---|
-11 | TAT→TGT | -4 | 酪氨酸→半胱氨酸 | 4 |
2 | ATG→ACG | 1 | 甲硫氨酸→苏氨酸 | 1 |
20 | GTC→GGC | 7 | 缬氨酸→甘氨酸 | 2 |
24 | GAC→GAG | 8 | 天冬氨酸→谷氨酸 | 1 |
35 | GAC→GCC | 12 | 天冬氨酸→丙氨酸 | 2 |
37 | TTC→GTC | 13 | 苯丙氨酸→缬氨酸 | 1 |
40 | TGC→CGC | 14 | 半胱氨酸→精氨酸 | 3 |
94 | TTC→GTC | 32 | 苯丙氨酸→缬氨酸 | 1 |
146 | GAC→GCC | 49 | 天冬氨酸→甘氨酸 | 1 |
146 | GAC→GGC | 49 | 天冬氨酸→丙氨酸 | 2 |
151 | CAC→TAC | 51 | 组氨酸→酪氨酸 | 1 |
151 | CAC→CGC | 51 | 组氨酸→精氨酸 | 1 |
152 | CAC→CCC | 51 | 组氨酸→脯氨酸 | 1 |
170 | CAC→CGC | 57 | 组氨酸→精氨酸 | 1 |
185 | CCG→CTG | 62 | 脯氨酸→亮氨酸 | 5 |
206 | CCG→CTG | 69 | 脯氨酸→亮氨酸 | 1 |
213 | CAT→CAG | 71 | 组氨酸→谷氨酸 | 1 |
226 | ACT→CCT | 76 | 苏氨酸→脯氨酸 | 3 |
232 | GGC→AGC | 78 | 甘氨酸→天冬氨酸 | 1 |
245 | CAT→CGT | 82 | 组氨酸→精氨酸 | 1 |
286 | AAG→CAG | 96 | 赖氨酸→谷氨酸 | 1 |
307 | TAC→CAC | 103 | 酪氨酸→组氨酸 | 1 |
319 | GAA→AAA | 107 | 谷氨酸→赖氨酸 | 1 |
395 | GGT→GAT | 132 | 甘氨酸→天冬氨酸 | 9 |
425 | ACG→ATG | 142 | 苏氨酸→甲硫氨酸 | 1 |
437 | GCG→GTG | 146 | 丙氨酸→缬氨酸 | 1 |
464 | GTG→GGG | 155 | 缬氨酸→甘氨酸 | 1 |
488 | GTG→GCG | 163 | 缬氨酸→丙氨酸 | 1 |
515 | CTG→CCG | 172 | 亮氨酸→脯氨酸 | 2 |
28 | CAG→TAG | 10 | 终止 | 1 |
123 | TAC→TAG | 41 | 终止 | 1 |
309 | TAC→TAG | 103 | 终止 | 1 |
52 | 插入GC | 移码突变 | 1 | |
130 | 插入 C | 移码突变 | 1 | |
136 | 缺失 G | 移码突变 | 2 | |
139 | 插入CA | 移码突变 | 1 | |
232 | 插入C | 移码突变 | 1 | |
243 | 插入T | 移码突变 | 1 | |
288 | 插入A | 移码突变 | 1 | |
341 | 缺失ACGCC | 移码突变 | 1 | |
342 | 缺失GCCAC | 移码突变 | 2 | |
392 | 插入 G | 移码突变 | 1 | |
392 | 插入GG | 移码突变 | 1 | |
408 | 插入 CA | 移码突变 | 1 | |
408 | 插入 A | 移码突变 | 2 | |
376 | 缺失 GATGAGGTC | 整码突变 | 1 | |
393 | 插入GGT | 整码突变 | 1 |
[1] | Scorpio A, Lindholm-Levy P, Heifets L , et al. Characterization of pncA mutations in pyrazinamide-resistant Mycobac-terium tuberculosis. Antimicrob Agentd Chemother, 1997,41(3):540-543. |
[2] |
Pérez-Osorio AC, Boyle DS, Ingham ZK , et al. Rapid identification of mycobacteria and drug-resistant Mycobacterium tuberculosis by use of a single multiplex PCR and DNA sequencing. J Clin Microbiol, 2012,50(2):326-336.
doi: 10.1128/JCM.05570-11 URL |
[3] |
Cheng SJ, Thibert L, Ssanchez T , et al. pncA mutations as a major mechanism of pyrazinamide resistantce in Mycobacterium tuberculosis: spread of a monoresistant strain in Quebec, Canada. Antimicrob Agents Chemother, 2000,44(3):528-532.
doi: 10.1128/AAC.44.3.528-532.2000 URL |
[4] |
Shi W, Zhang X, Jiang X , et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science, 2011,333(6049):1630-1632.
doi: 10.1126/science.1208813 URL |
[5] |
胡严杰, 黄海荣 . 结核分枝杆菌对吡嗪酰胺耐药的检测方法研究与进展. 中国防痨杂志, 2016,38(9):761-764.
doi: 10.3969/j.issn.1000-6621.2016.09.014 URL |
[6] |
Singh P, Wesley C, Jadaun GP , et al. Comparative evaluation of Löwenstein-Jensen proportion method, BacT/ALERT 3D system, and enzymatic pyrazinamidase assay for pyrazinamide susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol, 2007,45(1):76-80.
doi: 10.1128/JCM.00951-06 URL |
[7] | Krishnamurthy A, Almeida D, Rodrigues C , et al. Comparison of pyrazinamide drug susceptibility of M.tuberculosis by radiometric BACTEC and enzymatic pyrazinamidase assay. Indian J Med Microbiol, 2004,22(3):166-168. |
[8] |
Muthaiah M, Jagadeesan S, Ayalusamy N , et al. Molecular epidemiological study of pyrazinamide-resistance in clinical isolates of Mycobacterium tuberculosis from South India. Int J Mol Sci, 2010,11(7):2670-2680.
doi: 10.3390/ijms11072670 URL |
[9] |
Mirabal NC, Yzquierdo SL, Lemus D , et al. Evaluation of colorimetric methods using nicotinamide for rapid detection of pyrazinamide resistance in Mycobacterium tuberculosis. J Clin Microbiol, 2010,48(8):2729-2733.
doi: 10.1128/JCM.00311-10 URL |
[10] |
McCammon MT, Gillette JS, Thomas DP , et al. Detection by denaturing gradient gel electrophoresis of pncA mutations associated with pyrazinamide resistance in Mycobacterium tuberculosis isolates from the United States-Mexico border region. Antimicrob Agents Chemother, 2005,49(6):2210-2217.
doi: 10.1128/AAC.49.6.2210-2217.2005 URL |
[11] |
Zimic M, Sheen P, Quiliano M , et al. Peruvian and globally reported amino acid substitutions on the Mycobacterium tuberculosis pyrazinamidase suggest a conserved pattern of mutations associated to pyrazinamide resistance. Infect Genet Evol, 2010,10(2):346-349.
doi: 10.1016/j.meegid.2009.11.016 URL |
[12] |
李洪敏, 吴雪琼, 王巍 , 等. 结核菌耐药pncA和embB基因突变与临床治疗的研究. 中国医师杂志, 2004,6(6):742-744.
doi: 10.3760/cma.j.issn.1008-1372.2004.06.009 URL |
[13] |
姜英, 彭俊平, 杨帆 , 等. 结核分枝杆菌耐吡嗪酰胺分子机制研究. 微生物学免疫学进展, 2007,35(1):5-9.
doi: 10.3969/j.issn.1005-5673.2007.01.002 URL |
[14] |
何秀云, 庄玉辉, 李国利 , 等. 耐吡嗪酰胺结核分枝杆菌基因突变研究. 中华检验医学杂志, 2008,31(3):301-304.
doi: 10.3321/j.issn:1009-9158.2008.03.013 URL |
[15] | 石洁, 李辉, 马晓光 , 等. 河南省结核分枝杆菌吡嗪酰胺耐药基因pncA分析. 中国病原生物学杂志, 2013,8(9):796-798. |
[16] |
Portugal I, Barreiro L, Moniz-Pereira J , et al. pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates in Portugal. Antimicrob Agents Chemother, 2004,48(7):2736-2738.
doi: 10.1128/AAC.48.7.2736-2738.2004 URL pmid: 434191 |
[17] |
Park SK, Lee JY, Chang CL , et al. pncA mutations in clinical Mycobacterium tuberculosis isolates from Korea. BMC Infect Dis, 2001,1:4.
doi: 10.1186/1471-2334-1-4 URL pmid: 33507 |
[18] |
曾涛, 朱中元 . 结核分枝杆菌耐药分子机制及检测方法的研究进展. 中国热带医学, 2008,8(3):481-484.
doi: 10.3969/j.issn.1009-9727.2008.03.066 URL |
[19] |
Simons SO, van Ingen J, vail der Laan T , et al. Validation of pncA gene sequencing in combination with the mycobacterial growth indicator tube method to test suseeptibilitv of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol, 2012,50(2):428-434.
doi: 10.1128/JCM.05435-11 URL |
[20] |
Rodrigues Vde F, Telles MA, Ribeiro MO , et al. Characteri-zation of pncA mutations in pyrazinamide-resistant Mycobac-terium tuberculosis in Brazil. Antimicrob Agents Chemother, 2005,49(1):444-446.
doi: 10.1097/00001813-199703000-00013 URL pmid: 9055989 |
[21] |
Lee KW, Lee JM, Jung KS , et al. Characterization of pncA mutations of pyrazinamide-resistant Mycobacterium tuberculosis in Korea. J Korean Med Sci, 2001,16(5):537-543.
doi: 10.3346/jkms.2001.16.5.537 URL |
[22] |
Zimic M, Sheen P, Quiliano M , et al. Peruvian and globally reported amino acid substitutions on the Mycobacterium tuberculosis pyrazinamidase suggest a conserved pattern of mutations associated to pyrazinamide resistance. Infect Genet Evol, 2010,10(2):346-349.
doi: 10.1016/j.meegid.2009.11.016 URL |
[23] | Miotto P, Cabibbe AM, Feuerriegel S , et al. Mycobacterium tuberculosis pyrazinamide resistance determinants: a multicenter study. MBio, 2014,5(5):e01819-14. |
[24] |
Sheen P, Méndez M, Gilman RH , et al. Sputum PCR-single-strand conformational polymorphism test for same-day detection of pyrazinamide resistance in tuberculosis patients. J Clin Microbiol, 2009,47(9):2937-2943.
doi: 10.1128/JCM.01594-08 URL |
[25] | Sreevatsan S, Pan X, Zhang Y , et al. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother, 1997,41(3):636-640. |
[26] |
Hirano K, Takahashi M, Kazumi Y , et al. Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tuberc Lung Dis, 1997,78(2):117-122.
doi: 10.1016/S0962-8479(98)80004-X URL |
[27] | Napiórkowska A , Augustynowicz-Kopec' E, Zwolska Z. Phenotypic characterization of pyrazinamide-resistant Mycobacterium tuberculosis isolated in Poland. Pneumonol Alergol Pol, 2010,78(4):256-262. |
[28] |
郑惠文, 逄宇, 赵雁林 . 结核分枝杆菌在不同pH值液体培养基中对吡嗪酰胺敏感度的研究. 中国防痨杂志, 2017,39(2):149-153.
doi: 10.3969/j.issn.1000-6621.2017.02.009 URL |
[29] |
Simons SO , Mulder A, van Ingen J, et al. Role of rpsA gene sequencing in diagnosis of pyrazinamide resistance. J Clin Microbiol, 2013,51(1):382.
doi: 10.1128/JCM.02739-12 URL pmid: 3536190 |
[30] |
胡族琼, 蔡杏珊, 谢伟胜 , 等. 吡嗪酰胺耐药结核分枝杆菌pncA及rpsA基因突变特征分析. 中华检验医学杂志, 2014,37(4):285-289.
doi: 10.3760/cma.j.issn.1009-9158.2014.04.011 URL |
[31] |
Alexander DC, Ma JH, Guthrie JL , et al. Gene sequencing for routine verification of pyrazinamide resistance in Mycobacterium tuberculosis: a role for pncA but not rpsA. J Clin Microbiol, 2012,50(11):3726-3728.
doi: 10.1128/JCM.00620-12 URL |
[32] |
Tan Y, Hu Z, Zhang T , et al. Role of pncA and rpsA gene sequencing in detection of pyrazinamide in Mycobacterium tuberculosis isolates from Southern China. J Clin Microbiol, 2014,52(1):291-297.
doi: 10.1128/JCM.01903-13 URL |
[1] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[2] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[3] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[6] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[7] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[8] | Li Xuelian, Zhang Hongyan, Wang Jun, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan. Safety of extended delamanid use in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 164-168. |
[9] | Xu Zian, Pu Feifei, Feng Jing, Xia Ping. Research progress of high-throughput sequencing technology in the diagnosis and treatment of osteoarticular tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 224-230. |
[10] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[11] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[12] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[13] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[14] | Geng Zimei, Wang Chaohong, Long Sibo, Zheng Maike, Shi Yiheng, Sun Yong, Zhao Yan, Wang Guirong. Analysis of bacteriological positivity and rifampicin resistance in patients with severe pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1050-1055. |
[15] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||