Chinese Journal of Antituberculosis ›› 2018, Vol. 40 ›› Issue (2): 149-152.doi: 10.3969/j.issn.1000-6621.2018.02.007
• Expert Forum • Previous Articles Next Articles
Xin-chang CHEN,Wen-hong ZHANG()
Received:
2018-01-14
Online:
2018-02-10
Published:
2018-03-14
Xin-chang CHEN,Wen-hong ZHANG. Progress in the application of whole genome sequencing in tuberculosis research[J]. Chinese Journal of Antituberculosis, 2018, 40(2): 149-152. doi: 10.3969/j.issn.1000-6621.2018.02.007
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2018.02.007
[1] |
Roetzer A, Diel R, Kohl TA , et al. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLoS Med, 2013,10(2):e1001387.
doi: 10.1371/journal.pmed.1001387 URL |
[2] |
Gardy JL, Johnston JC, Ho Sui SJ , et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med, 2011,364(8):730-739.
doi: 10.1056/NEJMoa1003176 URL pmid: 21345102 |
[3] |
Walker TM, Ip CL, Harrell RH , et al. Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis, 2013,13(2):137-146.
doi: 10.1016/S1473-3099(12)70277-3 URL |
[4] | Guerra-Assunção JA, Crampin AC, Houben RM , et al. Large-scale whole genome sequencing of M.tuberculosis provides insights into transmission in a high prevalence area. Elife, 2015,4. |
[5] |
Lee RS, Radomski N, Proulx JF , et al. Reemergence and amplification of tuberculosis in the Canadian arctic. J Infect Dis, 2015,211(12):1905-1914.
doi: 10.1093/infdis/jiv011 URL pmid: 25576599 |
[6] |
Walker TM, Lalor MK, Broda A , et al. Assessment of Mycobacterium tuberculosis transmission in Oxfordshire, UK, 2007-12, with whole pathogen genome sequences: an observational study. Lancet Respir Med, 2014,2(4):285-292.
doi: 10.1016/S2213-2600(14)70027-X URL |
[7] |
Yang C, Luo T, Shen X , et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retro-spective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis, 2017,17(3):275-284.
doi: 10.1016/S1473-3099(16)30418-2 URL |
[8] |
Kato-Maeda M, Ho C, Passarelli B , et al. Use of whole genome sequencing to determine the microevolution of Mycobacterium tuberculosis during an outbreak. PLoS One, 2013,8(3):e58235.
doi: 10.1371/journal.pone.0058235 URL |
[9] |
Köser CU, Bryant JM, Becq J , et al. Whole-genome sequencing for rapid susceptibility testing of M.tuberculosis. N Engl J Med, 2013,369(3):290-292.
doi: 10.1056/NEJMc1215305 URL pmid: 23863072 |
[10] |
Brosch R, Gordon SV, Marmiesse M , et al. A new evolu-tionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A, 2002,99(6):3684-3689.
doi: 10.1073/pnas.052548299 URL pmid: 11891304 |
[11] |
Pfyffer GE, Auckenthaler R, van Embden JD , et al. Mycobacterium canettii, the smooth variant of M.tuberculosis, isolated from a Swiss patient exposed in Africa. Emerg Infect Dis, 1998,4(4):631-634.
URL pmid: 9661826 |
[12] |
Supply P, Marceau M, Mangenot S , et al. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet, 2013,45(2):172-179.
doi: 10.1038/ng.2517 URL |
[13] |
Comas I, Coscolla M, Luo T , et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet, 2013,45(10):1176-1182.
doi: 10.1038/ng.2744 URL |
[14] |
Brites D, Gagneux S . Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev, 2015,264(1):6-24.
doi: 10.1111/imr.2015.264.issue-1 URL |
[15] |
Denkinger CM, Schumacher SG, Boehme CC , et al. Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. Eur Respir J, 2014,44(2):435-446.
doi: 10.1183/09031936.00007814 URL |
[16] |
Schön T, Miotto P, Köser CU , et al. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect, 2017,23(3):154-160.
doi: 10.1016/j.cmi.2016.10.022 URL |
[17] |
Farhat MR, Shapiro BJ, Kieser KJ , et al. Genomic analysis identifies targets of convergent positive selection in drug-resis-tant Mycobacterium tuberculosis. Nat Genet, 2013,45(10):1183-1189.
doi: 10.1038/ng.2747 URL |
[18] |
Zhang H, Li D, Zhao L , et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet, 2013,45(10):1255-1260.
doi: 10.1038/ng.2735 URL |
[19] |
Walker TM, Kohl TA, Omar SV , et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis, 2015,15(10):1193-1202.
doi: 10.1016/S1473-3099(15)00062-6 URL |
[20] | Shi W, Chen J, Feng J , et al. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg Microbes Infect, 2014,3(8):e58. |
[21] |
Zhang S, Chen J, Shi W , et al. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg Microbes Infect, 2013,2(6):e34.
doi: 10.1038/emi.2013.38 URL |
[22] |
Zhang S, Chen J, Cui P , et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother, 2015,70(9):2507-2510.
doi: 10.1093/jac/dkv150 URL |
[23] |
Zhang S, Chen J, Cui P , et al. Mycobacterium tuberculosis mutations associated with reduced susceptibility to linezolid. Antimicrob Agents Chemother, 2016,60(4):2542-2544.
doi: 10.1128/AAC.02941-15 URL pmid: 26810645 |
[24] |
Gu Y, Yu X, Jiang G , et al. Pyrazinamide resistance among multidrug-resistant tuberculosis clinical isolates in a national referral center of China and its correlations with pncA, rpsA, and panD gene mutations. Diagn Microbiol Infect Dis, 2016,84(3):207-211.
doi: 10.1016/j.diagmicrobio.2015.10.017 URL |
[25] |
Simons SO, Mulder A, van Ingen J , et al. Role of rpsA gene sequencing in diagnosis of pyrazinamide resistance. J Clin Microbiol, 2013,51(1):382.
doi: 10.1128/JCM.02739-12 URL pmid: 3536190 |
[26] |
Lee RS, Pai M . Real-time sequencing of Mycobacterium tuberculosis: are we there yet. J Clin Microbiol, 2017,55(5):1249-1254.
doi: 10.1128/JCM.00358-17 URL pmid: 28298449 |
[27] |
Votintseva AA, Pankhurst LJ, Anson LW , et al. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures. J Clin Microbiol, 2015,53(4):1137-1143.
doi: 10.1128/JCM.03073-14 URL |
[28] |
Bradley P, Gordon NC, Walker TM , et al. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun, 2015,6:10063.
doi: 10.1038/ncomms10063 URL |
[29] |
Pankhurst LJ Del Ojo Elias C, Votintseva AA , et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med, 2016,4(1):49-58.
doi: 10.1016/S2213-2600(15)00466-X URL |
[30] | Quan TP, Bawa Z, Foster D, et al. Evaluation of whole genome sequencing for Mycobacterial species identification and drug susceptibility testing in a clinical setting: a large-scale prospective assessment of performance against line-probe assays and phenotyping. J Clin Microbiol , 2017, pii: JCM. 01480-17. |
[31] | Hatherell H, Colijn C, Stagg HR , et al. Interpreting whole genome sequencing for investigating tuberculosis transmission: a systematic review. BMC Med, 2016,14:21. |
[32] | Horne DJ, Pinto LM, Arentz M , et al. Diagnostic accuracy and reproducibility of WHO-endorsed phenotypic drug susceptibility testing methods for first-line and second-line antituberculosis drugs. J Clin Microbiol, 2013,51(2):393-401. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Jia Hui, Jing Hui, Ling Xiaojie, Wang Yan, Li Xuezheng. The diagnostic value of GeneXpert MTB/RIF Ultra in detecting sputum samples for newly diagnosed pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 298-304. |
[5] | Shi Yuru, Gu Dejian, Wu Jing, Liu Ting, Qin Linghan, Yue Li, Qi Yingjie. Diagnostic value of probe capture-based targeted next-generation sequencing and metagenomic next-generation sequencing for detecting Mycobacterium tuberculosis in bronchoalveolar lavage fluid [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 305-311. |
[6] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[7] | Li Qi, Wang Yujin, Wang Xueyu, Chu Naihui, Nie Wenjuan. Study on the metabolic interaction mechanism between the novel compound WX-081 and clarithromycin [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 142-149. |
[8] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[9] | Yan Guangxuan, Wang Xueyu, Wang Yujin, Lan Tinglong, Nie Wenjuan. Diagnostic value of using metagenomic second-generation sequencing on suspected osteoarticular tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 175-180. |
[10] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[11] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[12] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[13] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[14] | Geng Zimei, Wang Chaohong, Long Sibo, Zheng Maike, Shi Yiheng, Sun Yong, Zhao Yan, Wang Guirong. Analysis of bacteriological positivity and rifampicin resistance in patients with severe pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1050-1055. |
[15] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||