Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (5): 535-545.doi: 10.19982/j.issn.1000-6621.20250070
• Guideline·Standard·Consensus • Previous Articles Next Articles
Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association
Received:
2025-02-28
Online:
2025-05-10
Published:
2025-04-29
Supported by:
CLC Number:
Tuberculosis Basic Professional Branch, Chinese Antituberculosis Association. Expert consensus on the standardization of broth microdilution method for drug susceptibility testing of Mycobacterium tuberculosis in China[J]. Chinese Journal of Antituberculosis, 2025, 47(5): 535-545. doi: 10.19982/j.issn.1000-6621.20250070
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250070
药物中文名 | 药物英文名 | 药物英文缩写 | 推荐级别 | 推荐浓度范围(mg/L) |
---|---|---|---|---|
利福平 | Rifampicin | RIF | 最高 | 0.016~2 |
异烟肼 | Isoniazid | INH | 最高 | 0.016~2 |
左氧氟沙星 | Levofloxacin | LFX | 最高 | 0.06~8 |
莫西沙星 | Moxifloxacin | MFX | 最高a | - |
贝达喹啉 | Bedaquiline | BDQ | 最高 | 0.008~1 |
利奈唑胺 | Linezolid | LZD | 最高 | 0.06~4 |
氯法齐明 | Clofazimine | CFZ | 最高 | 0.008~1 |
德拉马尼 | Delamanid | DLM | 最高 | 0.002~0.25 |
普托马尼 | Pretomanid | PMD | 最高b | - |
吡嗪酰胺 | Pyrazinamide | PZA | 最高c | - |
乙胺丁醇 | Ethambutol | EMB | 较高 | 0.125~8 |
D-环丝氨酸 | D-cycloserine | DCS | 较高 | 1~64 |
特立齐酮 | Terizidone | TZD | 较高d | - |
乙硫异烟胺 | Ethionamide | ETO | 较高 | 0.125~16 |
丙硫异烟胺 | Prothionamide | PTO | 较高e | - |
卡那霉素 | Kanamycin | KAN | 一般f | 0.125~16 |
阿米卡星 | Amikacin | AMK | 一般g | - |
链霉素 | Streptomycin | STR | 不推荐 | - |
卷曲霉素 | Capreomycin | CPM | 不推荐 | - |
对氨基水杨酸 | Para-aminosalicylic acid | PAS | 不推荐h | - |
利福喷丁 | Rifapentine | RFT | 不推荐i | - |
利福布汀 | Rifabutin | RFB | 不推荐 | - |
氧氟沙星 | Ofloxacin | OFX | 不推荐j | - |
药物名称 (缩写) | WHO推荐ECOFF 值(mg/L)[ | CLSI推荐折点 (mg/L)[ | EUCAST推荐 折点(mg/L)[ | CRyPTIC Consortium 推荐ECOFF值 (UKMYC6/5)(mg/L)[ | 本共识拟临时 推荐折点(mg/L) |
---|---|---|---|---|---|
利福平(RIF) | 0.5 | 0.5 | - | 0.5 | 0.5 |
异烟肼(INH) | 0.125 | 0.12 | - | 0.1(0.2/0.4为临界MIC) | 0.125 |
左氧氟沙星(LFX) | 1 | - | - | 1 | 1 |
莫西沙星(MFX) | - | - | - | 1 | 0.5 |
贝达喹啉(BDQ) | 0.125(或0.25) | - | 0.25 | 0.25 | 0.25 |
利奈唑胺(LZD) | 1.0(或2.0) | - | - | 1 | 1 |
氯法齐明(CFZ) | 0.25(或0.5) | - | - | 0.25 | 0.25 |
德拉马尼(DLM) | 0.06(或0.125) | - | 0.06 | 0.12 | 0.125 |
普托马尼(PTM) | - | - | 2 | - | 2 |
乙胺丁醇(EMB) | 4 | ≤2.0为敏感,4.0为 不确定,≥8.0为耐药 | - | 4(4为临界MIC) | ≤2.0为敏感,4.0为不 确定结果,≥8.0为耐药 |
D-环丝氨酸(DCS) | 32(或64) | - | - | - | 32 |
乙硫异烟胺(ETO) | 4 | - | - | 4(4为临界MIC) | 4 |
卡那霉素(KAN) | 4 | - | - | 4 | 4 |
阿米卡星(AMK) | - | - | - | 1 | 1 |
链霉素(STR) | - | - | - | - | 2 |
卷曲霉素(CPM) | - | - | - | - | - |
对氨基水杨酸(PAS) | - | - | - | - | 2 |
利福布汀(RFB) | - | - | - | 0.12 | - |
利福喷丁(RFT) | - | - | - | - | - |
氧氟沙星(OFX) | - | - | - | - | 2 |
药物名称(缩写) | MIC值质控范围(mg/L)a | ||
---|---|---|---|
CLSI-冻干药粉微孔板[ | CLSI-冷冻微孔板[ | 其他研究 | |
利福平(RIF) | ≤0.12 | 0.06~0.25 | 0.03~0.25[ |
异烟肼(INH) | ≤0.12 | 0.03~0.12 | 0.03~0.25[ |
左氧氟沙星(LFX) | - | 0.12~1 | 0.12~1[ |
莫西沙星(MFX) | ≤0.5 | 0.06~0.5 | 0.06~0.5[ |
贝达喹啉(BDQ) | - | 0.015~0.06 | 0.015~0.06[ |
利奈唑胺(LZD) | - | 0.25~2 | 0.25~2[ |
氯法齐明(CFZ) | - | 0.03~0.25 | 0.03~0.25[ |
德拉马尼(DLM) | - | - | 0.002~0.016[ |
普托马尼(PMD) | - | - | - |
乙胺丁醇(EMB) | ≤0.5~2 | 0.25~2 | 0.25~2[ |
D-环丝氨酸(DCS) | - | - | 4~16[ |
特立齐酮(TZD) | - | - | - |
乙硫异烟胺(ETO) | 0.6~2.5 | - | - |
卡那霉素(KAN) | 1.2~5 | 0.25~2 | 0.25~2[ |
阿米卡星(AMK) | 0.25~1 | 0.25~2 | 0.25~2[ |
链霉素(STR) | 0.5~2 | - | - |
卷曲霉素(CPM) | - | 0.5~4 | 0.5~4[ |
对氨基水杨酸(PAS) | ≤0.5 | - | - |
利福喷丁(RFT) | - | - | - |
利福布汀(RFB) | ≤0.12 | - | - |
氧氟沙星(OFX) | 0.5~2 | 0.25~2 | 0.25~2[ |
[1] | World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
[2] | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. |
[3] | Tan Y, Hu Z, Zhao Y, et al. The beginning of the rpoB gene in addition to the rifampin resistance determination region might be needed for identifying rifampin/rifabutin cross-resis-tance in multidrug-resistant Mycobacterium tuberculosis isolates from Southern China. J Clin Microbiol, 2012, 50(1): 81-85. doi:10.1128/JCM.05092-11. |
[4] | Xia H, Zheng Y, Zhao B, et al. Assessment of a 96-Well Plate Assay of Quantitative Drug Susceptibility Testing for Mycobacterium Tuberculosis Complex in China. PLoS One, 2017, 12(1): e0169413. doi:10.1371/journal.pone.0169413. |
[5] | World Health Organization. Optimized broth microdilution plate methodology for drug susceptibility testing of Mycobacterium tuberculosis complex. Geneva: World Health Organization, 2022. |
[6] | European Committee on Antimicrobial Susceptibility Testing. Area of Technical Uncertainty (ATU) in antimicrobial susceptibility testing[EB/OL].[2025-02-26]. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Area_of_Technical_Uncertainty_-_guidance_2019-1.pdf. |
[7] | Köser CU, Georghiou SB, Schön T, et al. On the Consequences of Poorly Defined Breakpoints for Rifampin Susceptibility Testing of Mycobacterium tuberculosis Complex. J Clin Microbiol, 2021, 59(4): e02328-20. doi:10.1128/JCM.02328-20. |
[8] |
Maurer FP, Courvalin P, Böttger EC, et al. Integrating forecast probabilities in antibiograms: a way to guide antimicrobial prescriptions more reliably?. J Clin Microbiol, 2014, 52(10):3674-3684. doi:10.1128/JCM.01645-14.
pmid: 25100821 |
[9] |
Valsesia G, Hombach M, Maurer FP, et al. The Resistant-Population Cutoff (RCOFF): a New Concept for Improved Characterization of Antimicrobial Susceptibility Patterns of Non-Wild-Type Bacterial Populations. J Clin Microbiol, 2015, 53(6):1806-1811. doi:10.1128/JCM.03505-14.
pmid: 25762769 |
[10] |
Valsesia G, Roos M, Böttger EC, et al. A statistical approach for determination of disk diffusion-based cutoff values for systematic characterization of wild-type and non-wild-type bacterial populations in antimicrobial susceptibility testing. J Clin Microbiol, 2015, 53(6):1812-1822. doi:10.1128/JCM.03506-14.
pmid: 25762772 |
[11] |
Blöchliger N, Keller PM, Böttger EC, et al. MASTER: a model to improve and standardize clinical breakpoints for antimicrobial susceptibility testing using forecast probabilities. J Antimicrob Chemother, 2017, 72(9):2553-2561. doi:10.1093/jac/dkx196.
pmid: 28859448 |
[12] |
Köser CU, Robledo J, Shubladze N, et al. Guidance is needed to mitigate the consequences of analytic errors during antimicrobial susceptibility testing for TB. Int J Tuberc Lung Dis, 2021, 25(10):791-794. doi:10.5588/ijtld.21.0428.
pmid: 34615575 |
[13] |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8):2031-2043. doi:10.1093/jac/dkaa136.
pmid: 32361756 |
[14] | CRyPTIC Consortium. Quantitative measurement of antibiotic resistance in Mycobacterium tuberculosis reveals genetic determinants of resistance and susceptibility in a target gene approach. Nat Commun, 2024, 15(1):488. doi:10.1038/s41467-023-44325-5. |
[15] | Jouet A, Gaudin C, Badalato N, et al. Deep amplicon sequencing for culture-free prediction of susceptibility or resistance to 13 anti-tuberculous drugs. Eur Respir J, 2021, 57(3): 2002338. doi:10.1183/13993003.02338-2020. |
[16] | Vargas R Jr, Freschi L, Spitaleri A, et al. Role of Epistasis in Amikacin, Kanamycin, Bedaquiline, and Clofazimine Resis-tance in Mycobacterium tuberculosis Complex. Antimicrob Agents Chemother, 2021, 65(11): e0116421. doi:10.1128/AAC.01164-21. |
[17] |
Foongladda S, Banu S, Pholwat S, et al. Comparison of TaqMan Array Card and MYCOTBTM with conventional phenotypic susceptibility testing in MDR-TB. Int J Tuberc Lung Dis, 2016, 20(8):1105-1112. doi:10.5588/ijtld.15.0896.
pmid: 27393547 |
[18] | World Health Organization. Technical Report on critical concentrations for drug susceptibility testing of isoniazid and the rifamycins (rifampicin, rifabutin and rifapentine). Geneva: World Health Organization, 2021. |
[19] |
Ismail NA, Ismail F, Joseph L, et al. Epidemiological cut-offs for Sensititre susceptibility testing of Mycobacterium tuberculosis: interpretive criteria cross validated with whole genome sequencing. Sci Rep, 2020, 10(1):1013. doi:10.1038/s41598-020-57992-x.
pmid: 31974497 |
[20] | Heysell SK, Moore JL, Peloquin CA, et al. Outcomes and use of therapeutic drug monitoring in multidrug-resistant tuberculosis patients treated in virginia, 2009—2014. Tuberc Respir Dis (Seoul), 2015, 78(2):78-84. doi:10.4046/trd.2015.78.2.78. |
[21] |
Makhado NA, Matabane E, Faccin M, et al. Outbreak of multidrug-resistant tuberculosis in South Africa undetected by WHO-endorsed commercial tests: an observational study. Lancet Infect Dis, 2018, 18(12):1350-1359. doi:10.1016/S1473-3099(18)30496-1.
pmid: 30342828 |
[22] | Beckert P, Sanchez-Padilla E, Merker M, et al. MDR M.tuberculosis outbreak clone in Eswatini missed by Xpert has elevated bedaquiline resistance dated to the pre-treatment era. Genome Med, 2020, 12(1):104. doi:10.1186/s13073-020-00793-8. |
[23] | 夏辉, 郑扬, 宋媛媛. 世界卫生组织《优化肉汤微孔板法结核分枝杆菌复合群药物敏感性试验方法学》解读. 中国防痨杂志, 2022, 44(7): 641-645. doi:10.19982/j.issn.1000-6621.20220187. |
[24] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4: treatment-drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2020. |
[25] | Rancoita PMV, Cugnata F, Gibertoni Cruz AL, et al. Validating a 14-drug microtitre plate containing bedaquiline and delamanid for large-scale research susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2018, 62(9): e00344-18. doi:10.1128/AAC.00344-18. |
[26] | Clinical and Laboratory Standards Institute. Performance Standards for Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes. 2nd ed. Waynesboro, Virginia: Clinical and Laboratory Standards Institute, 2023. |
[27] | Schön T, Köser CU, Werngren J, et al. What is the role of the EUCAST reference method for MIC testing of the Mycobacterium tuberculosis complex?. Clin Microbiol Infect, 2020, 26(11):1453-1455. doi:10.1016/j.cmi.2020.07.037. |
[28] | CRyPTIC Consortium. Epidemiological cut-off values for a 96-well broth microdilution plate for high-throughput research antibiotic susceptibility testing of M.tuberculosis. Eur Respir J, 2022, 60(4): 2200239. doi:10.1183/13993003.00239-2022. |
[29] | 中华人民共和国国家卫生健康委员会. WS/T 807—2022 临床微生物培养、鉴定和药敏检测系统的性能验证. 2022-01-02. |
[30] |
Kaniga K, Cirillo DM, Hoffner S, et al. A Multilaboratory, Multicountry Study To Determine MIC Quality Control Ranges for Phenotypic Drug Susceptibility Testing of Selected First-Line Antituberculosis Drugs, Second-Line Injectables, Fluoroquinolones, Clofazimine, and Linezolid. J Clin Microbiol, 2016, 54(12):2963-2968. doi:10.1128/JCM.01138-16.
pmid: 27654338 |
[31] |
Kaniga K, Cirillo DM, Hoffner S, et al. A Multilaboratory, Multicountry Study To Determine Bedaquiline MIC Quality Control Ranges for Phenotypic Drug Susceptibility Testing. J Clin Microbiol, 2016, 54(12): 2956-2962. doi:10.1128/JCM.01123-16.
pmid: 27654337 |
[32] |
Schena E, Nedialkova L, Borroni E, et al. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTECTM MGITTM 960 system. J Antimicrob Chemother, 2016, 71(6): 1532-1539. doi:10.1093/jac/dkw044.
pmid: 27076101 |
[33] | Thermo Fisher Scientific. Thermo ScientificTM SensititreTM MIC Susceptibility Plates for Mycobacterium tuberculosis (011-MYCOTB CID10470)[EB/OL].[2025-02-26]. https://www.thermofisher.cn/. |
[34] | Thermo Fisher Scientific. Thermo ScientificTM SensititreTM MIC Susceptibility Plates for Mycobacterium tuberculosis (034-MYCOTB CID10470)[EB/OL].[2025-02-26]. https://www.thermofisher.cn/. |
[35] | World Health Organization. WHO Consolidated Guidelines on Drug-resistant Tuberculosis Treatment. Geneva: World Health Organization, 2019. |
[36] | Clinical and Laboratory Standards Institute. CLSI M100:Performance Standards for Antimicrobial Susceptibility Testing (35th ed)[EB/OL]. [2025-02-26]. https://clsi.org/shop/standards/m100/. |
[37] | 中华人民共和国国家卫生健康委员会. 国家卫生健康委关于印发人间传染的病原微生物目录的通知. 国卫科教发〔2023〕24 号. 2023-08-18. |
[38] | 中华人民共和国国家卫生和计划生育委员会.WS 233—2017 病原微生物实验室生物安全通用准则. 2017-07-24. |
[39] | 中华人民共和国国家卫生健康委员会. 可感染人类的高致病性病原微生物菌(毒)种或样本运输管理规定. 卫生部令第45号. 2005-12-28. |
[1] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital, Editorial Board of Chinese Journal of Antituberculosis, Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange and Promotive Association for Medical and Health Care. Expert consensus on the diagnosis and treatment of urological tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 546-558. |
[2] | Liu Qiao, Li Zhongqi, Zhu Limei, Lu Wei. Study on the status, problems and countermeasures of tuberculosis control service system in China [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 559-568. |
[3] | Wu Zhuhua, Wang Yong, Lai Xiaoyu, Ji Liwei, Chen Ruiming, LYU Chunfang, Xu Liuyue, Guo Huixin, Chen Yuhui, Liang Hongdi, Liu Shengyuan, Zhong Xinguang, Chen Xunxun. Evaluation of the diagnostic performance of the MiniDock MTB Test for rapid tuberculosis detection [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 577-581. |
[4] | Yao Mingxu, Wang Zeqi, Song Ruixue, Jia Hongyan, Sun Qi, Zhang Lanyue, Du Boping, Zhang Zongde, Wang Wen, Wu Liang, Pan Liping. The performance of Mycobacterium tuberculosis-specific antigens-induced cytokines in the diagnosis of tuberculosis among HIV-infected individuals [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 605-612. |
[5] | Wang Yuanning, Du Zongmin. Research progress on CRISPR/Cas molecular diagnosis of drug-resistant Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(5): 666-672. |
[6] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[7] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[8] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[9] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[10] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange , Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 243-257. |
[11] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[12] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[13] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group, Combined with HIV/AIDS Patients Group Chinese Antituberculosis Association, Chinese Antituberculosis Association of STD and AIDS Prevention and Control, the Western China Bone Tuberculosis Alliance, the North China Bone the North China Bone. Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 1-11. |
[14] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[15] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||