Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (2): 150-157.doi: 10.19982/j.issn.1000-6621.20240484
Previous Articles Next Articles
Wang Xueyu1, Wang Yujin1, Chu Naihui1(), Kang Wanli2(
), Nie Wenjuan1(
)
Received:
2024-11-03
Online:
2025-02-10
Published:
2025-02-08
Contact:
Nie Wenjuan, Email: 94642975@qq.com; Kang Wanli, Email: kangwlchch@163.com; Chu Naihui, Email: chunaihui1994@sina.com
Supported by:
CLC Number:
Wang Xueyu, Wang Yujin, Chu Naihui, Kang Wanli, Nie Wenjuan. A preliminary study on the enhanced in vivo exposure of sudapyridine in Mycobacterium abscessus-infected rats with the co-administration of clofazimine or clarithromycin[J]. Chinese Journal of Antituberculosis, 2025, 47(2): 150-157. doi: 10.19982/j.issn.1000-6621.20240484
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240484
组织/检测 时间点 | A组(ng/ml) | B组(ng/ml) | C组(ng/ml) | UAB值 | P值 | UAC值 | P值 |
---|---|---|---|---|---|---|---|
血浆 | |||||||
20min | 140.2(79.4,204.0) | 390.6(319.6,621.9) | 407.8(210.6,464.7) | 0.000 | 0.004 | 4.000 | 0.045 |
1h | 1394.5(914.9,1969.0) | 2281.6(1824.3,3384.7) | 824.8(642.6,2270.1) | 6.000 | 0.055 | 15.000 | 0.631 |
16h | 2505.9(1844.7,2986.8) | 3068.3(1677.0,3892.4) | 3008.0(2254.4,3905.3) | 14.000 | 0.522 | 14.000 | 0.522 |
脑组织 | |||||||
20min | NA | NA | NA | - | - | - | - |
1h | NA | NA | NA | - | - | - | - |
16h | 312.5(152.0,1859.9) | 346.1(179.8,486.6) | 248.8(138.5,352.0) | 10.000 | >0.999 | 7.000 | 0.462 |
组织/检测 时间点 | A组(ng/ml) | B组(ng/ml) | C组(ng/ml) | UAB值 | P值 | UAC值 | P值 |
椎体 | |||||||
20min | NA | NA | NA | - | - | - | - |
1h | 1799.3 | 1493.8 | 614.6 | - | - | - | - |
16h | 10464.7 (4720.6,14119.7) | 14896.9 (3218.8,20520.4) | 5502.3 (1797.3,8225.0) | 12.000 | 0.337 | 12.000 | 0.337 |
肺组织 | |||||||
20min | 474.0(236.7,1278.5) | 1151.7(803.4,1582.2) | 1466.6(859.1,1546.4) | 4.000 | 0.142 | 3.000 | 0.149 |
1h | 6632.0(5617.6,8014.1) | 9097.9(7027.5,10394.2) | 3478.1(2570.9,5322.7) | 5.000 | 0.037 | 4.000 | 0.025 |
16h | 23481.4 (16988.0,35219.7) | 34668.7 (18597.5,67806.0) | 27336.0 (16852.5,41559.3) | 12.000 | 0.337 | 16.000 | 0.749 |
组织/检测 时间点 | A组(ng/ml) | B组(ng/ml) | C组(ng/ml) | UAB值 | P值 | UAC值 | P值 |
---|---|---|---|---|---|---|---|
血浆 | |||||||
20min | NA | NA | NA | - | - | - | - |
1h | NA | NA | NA | - | - | - | - |
16h | 259.8(239.9,398.4) | 221.1(179.4,306.4) | 190.0(151.9,304.7) | 10.000 | 0.200 | 9.000 | 0.150 |
脑组织 | |||||||
20min | NA | NA | NA | - | - | - | - |
1h | NA | NA | NA | - | - | - | - |
16h | 201.3 | 136.5 | NA | - | - | - | - |
椎体 | |||||||
20min | NA | NA | NA | - | - | - | - |
1h | NA | NA | NA | - | - | - | - |
16h | 1986.1(1355.6,2618.4) | 1809.1(820.0,2653.0) | 1365.1(618.9,2051.4) | 15.000 | 0.631 | 7.000 | 0.144 |
肺组织 | |||||||
20min | NA | NA | NA | - | - | - | - |
1h | 735.5(500.1,994.1) | NA | NA | - | - | - | - |
16h | 31826.3 (25584.8,42631.7) | 36523.2 (21518.1,49006.9) | 23407.4 (18053.2,30014.0) | 16.000 | 0.749 | 8.000 | 0.109 |
组织/检测 时间点 | D组(ng/ml) | E组(ng/ml) | F组(ng/ml) | UDE值 | P值 | UDF值 | P值 |
---|---|---|---|---|---|---|---|
血浆 | |||||||
1h | 783.7(453.1,902.1) | 487.0(377.5,588.2) | 896.6(840.0,1547.1) | 7.000 | 0.144 | 6.000 | 0.100 |
4h | 1415.3(671.9,1779.0) | 683.0(284.4,995.5) | 2264.6(1724.4,3826.0) | 8.000 | 0.109 | 3.000 | 0.016 |
16h | 879.4(640.9,954.5) | 869.0(684.8,1070.8) | 2045.0(1922.8,3757.1) | 17.000 | 0.873 | 0.000 | 0.004 |
脑组织 | |||||||
1h | 219.4 | NA | 133.3(96.4,189.0) | - | - | - | - |
4h | 347.3(288.3,472.1) | 289.1 | 273.4(236.7,379.8) | - | - | 11.000 | 0.465 |
16h | 308.6(215.8,527.9) | 264.1(235.0,309.5) | 559.3(494.3,1138.3) | 15.000 | 0.631 | 5.000 | 0.037 |
椎体 | |||||||
1h | 1730.7(1248.9,4507.5) | 616.8 | NA | - | - | - | - |
4h | 1807.6(1299.6,3924.6) | 774.3 | 2977.4(826.1,3748.4) | - | - | 12.000 | 0.917 |
16h | 1734.4(1498.2,6495.8) | 1739.2(1196.4,1983.1) | 7325.1(2691.5,14443.7) | 10.000 | 0.361 | 9.000 | 0.150 |
肺组织 | |||||||
1h | 6314.3(4818.1,8130.0) | 3942.5(2798.9,5275.7) | 5036.3(4415.6,6672.7) | 5.000 | 0.037 | 13.000 | 0.423 |
4h | 16736.4 (11132.8,26282.3) | 9052.0 (4563.1,14315.5) | 12952.6 (12734.5,13638.5) | 8.000 | 0.109 | 7.000 | 0.078 |
16h | 8671.0 (4086.1,13530.3) | 10297.1 (5439.3,14659.1) | 25095.3 (13083.2,30438.4) | 17.000 | 0.873 | 2.000 | 0.010 |
[1] | Cowman S, van Ingen J, Griffith DE, et al. Non-tuberculous mycobacterial pulmonary disease. Eur Respir J, 2019, 54(1): 1900250. doi:10.1183/13993003.00250-2019. |
[2] |
Dahl VN, Molhave M, Floe A, et al. Global trends of pulmonary infections with nontuberculous mycobacteria: a systematic review. Int J Infect Dis, 2022, 125: 120-131. doi:10.1016/j.ijid.2022.10.013.
pmid: 36244600 |
[3] | Griffith DE, Daley CL. Treatment of Mycobacterium abscessus Pulmonary Disease. Chest, 2022, 161(1): 64-75. doi:10.1016/j.chest.2021.07.035. |
[4] | van der Laan R, Snabilie A, Obradovic M. Meeting the challenges of NTM-PD from the perspective of the organism and the disease process: innovations in drug development and delivery. Respir Res, 2022, 23(1): 376. doi:10.1186/s12931-022-02299-w. |
[5] | World Health Organization. Rapid communication: key changes to treatment of multidrug-and rifampicin-resistant tuberculosis (MDR/RR-TB). Geneva: World Health Organization, 2018. |
[6] |
Ruth MM, Sangen JJN, Remmers K, et al. A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria. J Antimicrob Chemother, 2019, 74(4): 935-943. doi:10.1093/jac/dky526.
pmid: 30649327 |
[7] | Litvinov V, Makarova M, Kudlay D, et al. In vitro activity of bedaquiline against Mycobacterium avium complex. J Med Microbiol, 2021, 70(10). doi:10.1099/jmm.0.001439. |
[8] | Pym AS, Diacon AH, Tang SJ, et al. Bedaquiline in the treatment of multidrug-and extensively drug-resistant tuberculosis. Eur Respir J, 2016, 47(2): 564-574. doi:10.1183/13993003.00724-2015. |
[9] | Zhang SJ, Yang Y, Sun WW, et al. Effectiveness and safety of bedaquiline-containing regimens for treatment on patients with refractory RR/MDR/XDR-tuberculosis: a retrospective cohort study in East China. BMC Infect Dis, 2022, 22(1): 715. doi:10.1186/s12879-022-07693-9. |
[10] |
Daley CL, Iaccarino JM, Lange C, et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin Infect Dis, 2020, 71(4): 905-913. doi:10.1093/cid/ciaa1125.
pmid: 32797222 |
[11] | Svensson EM, Dosne AG, Karlsson MO. Population Pharmacokinetics of Bedaquiline and Metabolite M2 in Patients With Drug-Resistant Tuberculosis: The Effect of Time-Varying Weight and Albumin. CPT Pharmacometrics Syst Pharmacol, 2016, 5(12):682-691. doi:10.1002/psp4.12147. |
[12] | Gao M, Gao J, Xie L, et al. Early outcome and safety of bedaquiline-containing regimens for treatment of MDR-and XDR-TB in China: a multicentre study. Clin Microbiol Infect, 2021, 27(4): 597-602. doi:10.1016/j.cmi.2020.06.004. |
[13] | Yao R, Wang B, Fu L, et al. Sudapyridine (WX-081), a Novel Compound against Mycobacterium tuberculosis. Microbiol Spectr, 2022, 10(1): e0247721. doi:10.1128/spectrum.02477-21. |
[14] | Zhu R, Shang Y, Chen S, et al. In Vitro Activity of the Sudapyridine (WX-081) against Non-Tuberculous Mycobacteria Isolated in Beijing, China. Microbiol Spectr, 2022, 10(6): e0137222. doi:10.1128/spectrum.01372-22. |
[15] | Zheng L, Wang H, Qi X, et al. Sudapyridine (WX-081) antibacterial activity against Mycobacterium avium, Mycobacterium abscessus, and Mycobacterium chelonae in vitro and in vivo. mSphere, 2024, 9(2):e0051823. doi:10.1128/msphere.00518-23. |
[16] | Huang Z, Luo W, Xu D, et al. Discovery and preclinical profile of sudapyridine (WX-081), a novel anti-tuberculosis agent. Bioorg Med Chem Lett, 2022, 71: 128824. doi:10.1016/j.bmcl.2022.128824. |
[17] | Zheng L, Qi X, Zhang W, et al. Efficacy of PBTZ169 and pretomanid against Mycobacterium avium, Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium fortuitum in BALB/c mice models. Front Cell Infect Microbiol, 2023, 22(13):1115530. doi:10.3389/fcimb.2023.1115530. |
[18] |
Rustomjee R, Diacon AH, Allen J, et al. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC 207 in treatment of pulmonary tuberculosis. Antimicrob Agents Chemother, 2008, 52(8):2831-2835. doi:10.1128/AAC.01204-07.
pmid: 18505852 |
[19] | Kwak N, Dalcolmo MP, Daley CL, et al. Mycobacterium abscessus pulmonary disease: individual patient data meta-analysis. Eur Respir J, 2019, 54(1):1801991. doi:10.1183/13993003.01991-2018. |
[20] | 胡鑫洋, 雷婧, 高静韬. 含贝达喹啉长程及短程治疗方案在耐药结核病不同人群中的应用. 国际流行病学传染病学杂志, 2024, 51(2):130-137. doi:10.3760/cma.j.cn331340-20230829-00028. |
[21] |
Obregón-Henao A, Arnett KA, Henao-Tamayo M, et al. Susceptibility of Mycobacterium abscessus to antimycobacterial drugs in preclinical models. Antimicrob Agents Chemother, 2015, 59(11):6904-6912. doi:10.1128/AAC.00459-15.
pmid: 26303795 |
[22] | van Heeswijk RP, Dannemann B, Hoetelmans RM. Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemothe, 2014, 69(9):2310-2318. doi:10.1093/jac/dku171. |
[23] |
Sangana R, Gu H, Chun DY, et al. Evaluation of Clinical Drug Interaction Potential of Clofazimine Using Static and Dynamic Modeling Approaches. Drug Metab Dispos, 2018, 46(1):26-32. doi:10.1124/dmd.117.077834.
pmid: 29038231 |
[24] | Kurosawa K, Rossenu S, Biewenga J, et al. Population Pharmacokinetic Analysis of Bedaquiline-Clarithromycin for Dose Selection Against Pulmonary Nontuberculous Mycobacteria Based on a Phase 1, Randomized, Pharmacokinetic Study. J Clin Pharmacol, 2021, 61(10):1344-1355. doi:10.1002/jcph.1887. |
[25] |
Moj D, Hanke N, Britz H, et al. Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug-Drug Interactions and Co-medication Regimens. AAPS J, 2017, 19(1):298-312. doi:10.1208/s12248-016-0009-9.
pmid: 27822600 |
[26] | 吕秋菊, 蒲强红. 大环内酯类抗菌药物介导的药物相互作用临床试验文献评估. 中国药房, 2017, 28(5):715-720. doi:10.6039/j.issn.1001-0408.2017.05.38. |
[27] | Nie W, Gao S, Su L, et al. Antibacterial activity of the novel compound Sudapyridine (WX-081) against Mycobacterium abscessus. Front Cell Infect Microbiol, 2023, 13: 1217975. doi:10.3389/fcimb.2023.1217975. |
[1] | Liu Juxiu, Zhang Jianhua, Wen Junjun, Jiang Xiaoshuang. Analysis and trend prediction of Mycobacterium tuberculosis drug resistance in Jilin City [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 348-354. |
[2] | Li Qi, Wang Yujin, Wang Xueyu, Chu Naihui, Nie Wenjuan. Study on the metabolic interaction mechanism between the novel compound WX-081 and clarithromycin [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 142-149. |
[3] | Shi Lulu, Jing Hui, Liang Min, Li Xuezheng. Analysis of clinical results of blood concentration detection of antituberculosis drugs by liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 886-891. |
[4] | Ge Fei, Zhu Hui, Cheng Kai, Lu Yu, Xu Jian. Study on the determination of isoniazid and its metabolites concentration in plasma by high-performance liquid chromatography-mass spectrometry [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 549-556. |
[5] | Su Lei, Liu Lina, Wang Qingfeng, Chu Naihui, Nie Wenjuan. Antibacterial activity of a new compound, Shudapyridine (WX-081), against Mycobacterium abscesses [J]. Chinese Journal of Antituberculosis, 2023, 45(12): 1147-1151. |
[6] | XIE Li, ZHU Hui, GAO Jing-tao, LIU Zhong-quan, MA Li-ping, ZHANG Li-qun, GE Qi-ping, NIE Li-hui, KONG Zhong-shun, WU Xiao-guang, LIU Rong-mei, CHEN Hong-mei, SONG Yan-hua, LI Qiang, LYU Zi-zheng, LIU Yu-hong, LU Yu, PANG Yu, GAO Meng-qiu. Changes of plasma concentration of bedaquiline during the treatment of drug-resistant pulmonary tuberculosis and its assocation with QTc interval prolongation [J]. Chinese Journal of Antituberculosis, 2022, 44(3): 219-226. |
[7] | Beijing Chest Hospital, Capital Medical University, Editorial Board of Chinese Journal of Antituberculosis. Expert consensus on the therapeutic drug monitoring of anti-tuberculosis drugs [J]. Chinese Journal of Antituberculosis, 2021, 43(9): 867-873. |
[8] | WANG Le-le, YANG Song, TANG Shen-jie. A review of application of therapeutic drug monitoring in tuberculosis treatment [J]. Chinese Journal of Antituberculosis, 2021, 43(3): 285-290. |
[9] | ZHANG Pei-ze, ZHENG Jun-feng, CAO Wei-peng, WANG Yu-xiang, CHEN Tao, FU Liang, DENG Guo-fang. Study of the serum concentration at two time points after taking rifampicin [J]. Chinese Journal of Antituberculosis, 2020, 42(5): 493-497. |
[10] | GAO Tian-hui,SHU Wei,GAO Jing-tao,LU Yu,LI Qi. Analysis of clarithromycin resistance and its influencing factors in 254 patients with drug-resistant tuberculosis [J]. Chinese Journal of Antituberculosis, 2020, 42(3): 259-265. |
[11] | YING Ruo-yan, HUANG Xiao-chen, WANG Jie, LIU Yi-dian, SHA Wei, YANG Hua. Clinical analysis of drug sensitivity tests of various drug-resistant MTB isolates against different combinations of anti-tuberculosis drugs in vitro [J]. Chinese Journal of Antituberculosis, 2020, 42(11): 1183-1182. |
[12] | Ming-wu LI,Ming-hong LAI,Meng MA,Rong WAN,Yuan XU,Chao-mei DU. Analysis on the monitoring results of plasma-drug concentration of rifampicin in different dosage forms [J]. Chinese Journal of Antituberculosis, 2019, 41(6): 645-649. |
[13] | Jun ZHOU,Xiao-hui LYU,Xiu-qi ZHENG,Chao-gang XIONG,Yuan ZHAO,Li-yun DANG. Comparative analysis of the adjustment success ratio of plasma drug concentration of three anti-tubercular drugs [J]. Chinese Journal of Antituberculosis, 2018, 40(9): 969-972. |
[14] | Shao-chen GUO,Hui ZHU,Chao GUO,Bin WANG,Zhong-quan LIU,Jian XU,Lei FU,Xiao-you CHEN,Yu LU. Analysis of plasma concentrations of first-line anti-tuberculosis drugs in 909 tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2018, 40(7): 744-749. |
[15] | ZHU Hui,LIU Zhong-quan,XIE Li,GUO Shao-chen,WANG Bin,FU Lei,LU Yu. Determination of bedaquiline plasma concentration by high performance liquid chromatography-mass spectrometry/mass spectrometry [J]. Chinese Journal of Antituberculosis, 2018, 40(12): 1319-1324. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||