[1] |
Steyn M, Scholtz Y, Botha D, et al. The changing face of tuberculosis: trends in tuberculosis-associated skeletal changes. Tuberculosis (Edinb), 2013, 93(4): 467-474. doi:10.1016/j.tube.2013.04.003.
|
[2] |
Ono T, Nakashima T. Recent advances in osteoclast biology. Histochem Cell Biol, 2018, 149(4): 325-341. doi:10.1007/s00418-018-1636-2.
pmid: 29392395
|
[3] |
Udagawa N, Koide M, Nakamura M, et al. Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab, 2021, 39(1): 19-26. doi:10.1007/s00774-020-01162-6.
pmid: 33079279
|
[4] |
赵鸿健, 郭谦, 董子健, 等. 破骨前体细胞异质性与破骨细胞分化之间的联系. 骨科, 2023, 14(2): 187-191. doi:10.3969/j.issn.1674-8573.2023.02.017.
|
[5] |
Nelson CA, Warren JT, Wang MW, et al. RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor. Structure, 2012, 20(11): 1971-1982. doi:10.1016/j.str.2012.08.030.
pmid: 23039992
|
[6] |
Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 1997, 390(6656): 175-179. doi:10.1038/36593.
|
[7] |
Croft M, Benedict CA, Ware CF. Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov, 2013, 12(2): 147-168. doi:10.1038/nrd3930.
pmid: 23334208
|
[8] |
Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999, 397(6717): 315-323. doi:10.1038/16852.
|
[9] |
Li J, Sarosi I, Yan XQ, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A, 2000, 97(4): 1566-1571. doi:10.1073/pnas.97.4.1566.
|
[10] |
Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 1997, 390(6656): 175-179. doi:10.1038/36593.
|
[11] |
Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab, 2012, 23(11): 582-590. doi:10.1016/j.tem.2012.05.005.
|
[12] |
Kapur RP, Yao Z, Iida MH, et al. Malignant autosomal recessive osteopetrosis caused by spontaneous mutation of murine Rank. J Bone Miner Res, 2004, 19(10): 1689-1697. doi:10.1359/JBMR.040713.
pmid: 15355564
|
[13] |
Akatsu T, Takahashi N, Udagawa N, et al. Role of prostaglandins in interleukin-1-induced bone resorption in mice in vitro. J Bone Miner Res, 1991, 6(2): 183-189. doi:10.1002/jbmr.5650060212.
pmid: 2028836
|
[14] |
Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys, 2008, 473(2): 139-146. doi:10.1016/j.abb.2008.03.018.
pmid: 18395508
|
[15] |
Wong BR, Rho J, Arron J, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem, 1997, 272(40): 25190-25194. doi:10.1074/jbc.272.40.25190.
pmid: 9312132
|
[16] |
Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 1997, 390(6656): 175-179. doi:10.1038/36593.
|
[17] |
Kong YY, Feige U, Sarosi I, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature, 1999, 402(6759): 304-309. doi:10.1038/46303.
|
[18] |
Bord S, Ireland DC, Beavan SR, et al. The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone, 2003, 32(2): 136-141. doi:10.1016/s8756-3282(02)00953-5.
pmid: 12633785
|
[19] |
Robling AG, Bonewald LF. The Osteocyte: New Insights. Annu Rev Physiol, 2020, 82: 485-506. doi:10.1146/annurev-physiol-021119-034332.
pmid: 32040934
|
[20] |
Madel MB, Ibáñez L, Wakkach A, et al. Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Front Immunol, 2019, 10: 1408. doi:10.3389/fimmu.2019.01408.
|
[21] |
Mansour A, Wakkach A, Blin-Wakkach C. Emerging Roles of Osteoclasts in the Modulation of Bone Microenvironment and Immune Suppression in Multiple Myeloma. Front Immunol, 2017, 8: 954. doi:10.3389/fimmu.2017.00954.
pmid: 28848556
|
[22] |
Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol, 2019, 19(10): 626-642. doi:10.1038/s41577-019-0178-8.
pmid: 31186549
|
[23] |
Hikosaka Y, Nitta T, Ohigashi I, et al. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity, 2008, 29(3): 438-450. doi:10.1016/j.immuni.2008.06.018.
pmid: 18799150
|
[24] |
Mizuno A, Kanno T, Hoshi M, et al. Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J Bone Miner Metab, 2002, 20(6): 337-344. doi:10.1007/s007740200049.
pmid: 12434161
|
[25] |
Shin B, Yu J, Park ES, et al. Secretion of a truncated osteopetrosis-associated transmembrane protein 1 (OSTM1) mutant inhibits osteoclastogenesis through down-regulation of the B lymphocyte-induced maturation protein 1 (BLIMP1)-nuclear factor of activated T cells c1 (NFATc1) axis. J Biol Chem, 2014, 289(52): 35868-35881. doi:10.1074/jbc.M114.589614.
pmid: 25359771
|
[26] |
Deng J, Yang Y, He J, et al. Vitamin D receptor activated by vitamin D administration alleviates Mycobacterium tuberculosis-induced bone destruction by inhibiting NFκB-mediated aberrant osteoclastogenesis. FASEB J, 2021, 35(6): e21543. doi:10.1096/fj.202100135R.
|
[27] |
Wei CM, Liu Q, Song FM, et al. Artesunate inhibits RANKL-induced osteoclastogenesis and bone resorption in vitro and prevents LPS-induced bone loss in vivo. J Cell Physiol, 2018, 233(1): 476-485. doi:10.1002/jcp.25907.
|
[28] |
Thummuri D, Jeengar MK, Shrivastava S, et al. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Pharmacol Res, 2015, 99: 63-73. doi:10.1016/j.phrs.2015.05.006.
pmid: 26022736
|
[29] |
Thummuri D, Naidu VGM, Chaudhari P. Carnosic acid attenua-tes RANKL-induced oxidative stress and osteoclastogenesis via induction of Nrf2 and suppression of NF-κB and MAPK signalling. J Mol Med (Berl), 2017, 95(10): 1065-1076. doi:10.1007/s00109-017-1553-1.
pmid: 28674855
|
[30] |
Chen X, Wang Z, Duan N, et al. Osteoblast-osteoclast intera-ctions. Connect Tissue Res, 2018, 59(2): 99-107. doi:10.1080/03008207.2017.1290085.
|
[31] |
梁思敏, 蔡则成, 王志强, 等. 结核杆菌裂解物刺激后的成骨细胞来源外泌体对破骨细胞的影响. 中国脊柱脊髓杂志, 2021, 31(1): 69-75. doi:10.3969/j.issn.1004-406X.2021.01.10.
|
[32] |
Wright KM, Friedland JS. Differential regulation of chemokine secretion in tuberculous and staphylococcal osteomyelitis. J Bone Miner Res, 2002, 17(9): 1680-1690. doi:10.1359/jbmr.2002.17.9.1680.
pmid: 12211439
|
[33] |
Zhang Y, Liu X, Li K, et al. Mycobacterium tuberculosis 10-kDa co-chaperonin regulates the expression levels of receptor activator of nuclear factor-κB ligand and osteoprotegerin in human osteoblasts. Exp Ther Med, 2015, 9(3): 919-924. doi:10.3892/etm.2014.2153.
|
[34] |
Bergh JJ, Xu Y, Farach-Carson MC. Osteoprotegerin expression and secretion are regulated by calcium influx through the L-type voltage-sensitive calcium channel. Endocrinology, 2004, 145(1): 426-436. doi:10.1210/en.2003-0319.
pmid: 14525906
|
[35] |
徐亦文, 曹阳, 安蒂, 等. 自噬在破骨细胞分化过程中的调控作用. 现代免疫学, 2016, 36(5): 400-404.
|
[36] |
Vaishnav B, Suthar N, Shaikh S, et al. Clinical study of spinal tuberculosis presenting with neuro-deficits in Western India. Indian J Tuberc, 2019, 66(1): 81-86. doi:10.1016/j.ijtb.2018.04.009.
pmid: 30797289
|
[37] |
王增顺, 索南昂秀, 刘立民, 等. 自噬在结核菌素诱导破骨细胞形成中的作用及机制. 脊柱外科杂志, 2022, 20(1): 45-51. doi:10.3969/j.issn.1672-2957.2022.01.009.
|
[38] |
Arai A, Kim S, Goldshteyn V, et al. Beclin1 Modulates Bone Homeostasis by Regulating Osteoclast and Chondrocyte Differen-tiation. J Bone Miner Res, 2019, 34(9): 1753-1766. doi:10.1002/jbmr.3756.
|
[39] |
Mootoo A, Stylianou E, Arias MA, et al. TNF-alpha in tuberculosis: a cytokine with a split personality. Inflamm Allergy Drug Targets, 2009, 8(1): 53-62. doi:10.2174/187152809787582543.
pmid: 19275693
|
[40] |
马赫, 张建群, 梁思敏, 等. 肿瘤坏死因子-α与破骨细胞形成的关系初探. 宁夏医科大学学报, 2018, 40(1): 17-20, 41. doi:10.16050/j.cnki.issn1674-6309.2018.01.004.
|
[41] |
夏琳. TNF-α对RANKL体外诱导破骨细胞分化的促进作用及其机制探讨. 济南: 山东大学, 2013.
|