Chinese Journal of Antituberculosis ›› 2021, Vol. 43 ›› Issue (7): 645-648.doi: 10.3969/j.issn.1000-6621.2021.07.001
Previous Articles Next Articles
Received:
2021-05-18
Online:
2021-07-10
Published:
2021-07-09
Contact:
GAO Qian
E-mail:qiangao@fudan.edu.cn
YANG Ting-ting, GAO Qian. The tuberculosis drug-resistance and transmission surveillance network based on whole genome sequencing data[J]. Chinese Journal of Antituberculosis, 2021, 43(7): 645-648. doi: 10.3969/j.issn.1000-6621.2021.07.001
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2021.07.001
[1] |
黄飞, 赵雁林. 加快结核病监测系统信息化建设. 中国防痨杂志, 2020, 42(7):649-652. doi: 10.3969/j.issn.1000-6621.2020.07.001.
doi: 10.3969/j.issn.1000-6621.2020.07.001 |
[2] |
李涛, 杜昕, 陈伟, 等. 中国结核病管理信息监测与监控的回顾与展望. 中国防痨杂志, 2020, 42(7):657-661. doi: 10.3969/j.issn.1000-6621.2020.07.003.
doi: 10.3969/j.issn.1000-6621.2020.07.003 |
[3] |
Zhao Y, Xu S, Wang L, et al. National survey of drug-resis-tant tuberculosis in China. N Engl J Med, 2012, 366(23):2161-2170. doi: 10.1056/NEJMoa1108789.
doi: 10.1056/NEJMoa1108789 URL |
[4] |
郑惠文, 赵雁林. 中国结核病耐药监测现状与监测体系建设. 中国实用内科杂志, 2015, 35(8):647-650. doi: 10.7504/nk2015070102.
doi: 10.7504/nk2015070102 |
[5] |
马爱静, 赵雁林. 耐药结核病的流行和监测现状. 中国抗生素杂志, 2018, 43(5):502-506. doi: 10.3969/j.issn.1001-8689.2018.05.002.
doi: 10.3969/j.issn.1001-8689.2018.05.002 |
[6] |
Yang C, Shen X, Peng Y, et al. Transmission of Mycobacterium tuberculosis in China: a population-based molecular epidemiologic study. Clin Infect Dis, 2015, 61(2):219-227. doi: 10.1093/cid/civ255.
doi: 10.1093/cid/civ255 URL |
[7] |
Yang C, Luo T, Shen X, et al. Transmission of multidrug-resistant Mycobacterium tuberculosis in Shanghai, China: a retros-pective observational study using whole-genome sequencing and epidemiological investigation. Lancet Infect Dis, 2017, 17(3):275-284. doi: 10.1016/S1473-3099(16)30418-2.
doi: 10.1016/S1473-3099(16)30418-2 URL |
[8] |
Jiang Q, Liu Q, Ji L, et al. Citywide transmission of multidrug-resistant tuberculosis under China’s rapid urbanization: a retrospective population-based genomic spatial epidemiological study. Clin Infect Dis, 2020, 71(1):142-151. doi: 10.1093/cid/ciz790.
doi: 10.1093/cid/ciz790 pmid: 31504306 |
[9] |
Shea J, Halse TA, Lapierre P, et al. Comprehensive whole-genome sequencing and reporting of drug resistance profiles on clinical cases ofMycobacterium tuberculosis in New York State. J Clin Microbiol, 2017, 55(6):1871-1882. doi: 10.1128/JCM.00298-17.
doi: 10.1128/JCM.00298-17 URL |
[10] |
Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015, 7(1):51. doi: 10.1186/s13073-015-0164-0.
doi: 10.1186/s13073-015-0164-0 URL |
[11] |
Pankhurst LJ, Del Ojo Elias C, Votintseva AA, et al. Rapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med, 2016, 4(1):49-58. doi: 10.1016/S2213-2600(15)00466-X.
doi: S2213-2600(15)00466-X pmid: 26669893 |
[12] |
Walker TM, Kohl TA, Omar SV, et al. Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. Lancet Infect Dis, 2015, 15(10):1193-1202. doi: 10.1016/S1473-3099(15)00062-6.
doi: 10.1016/S1473-3099(15)00062-6 URL |
[13] |
Takiff HE, Feo O. Clinical value of whole-genome sequencing of Mycobacterium tuberculosis. Lancet Infect Dis, 2015, 15(9):1077-1090. doi: 10.1016/S1473-3099(15)00071-7.
doi: 10.1016/S1473-3099(15)00071-7 URL |
[14] |
Nikolayevskyy V, Niemann S, Anthony R, et al. Role and value of whole genome sequencing in studying tuberculosis transmission. Clin Microbiol Infec, 2019, 25(11):1377-1382. doi: 10.1016/j.cmi.2019.03.022.
doi: 10.1016/j.cmi.2019.03.022 |
[15] |
Satta G, Lipman M, Smith GP, et al. Mycobacterium tuberculosis and whole-genome sequencing: how close are we to unleashing its full potential? Clin Microbiol Infect, 2018, 24(6):604-609. doi: 10.1016/j.cmi.2017.10.030.
doi: 10.1016/j.cmi.2017.10.030 URL |
[16] | Talarico S, Silk B, Shaw T, et al. Whole-genome sequencing for investigation of recent TB transmission in the United States: current uses and future plans[R/OL].[2021-05-18].https://www.cdc.gov/tb/programs/genotyping/Tuberculosis_WGS_Training_Module.pdf. |
[17] | European Centre for Disease Prevention and Control. Expert opinion on whole genome sequencing for public health surveillance. Stockholm: European Centre for Disease Prevention and Control, 2016. |
[18] | National TB Strategy team. Collaborative TB strategy for england, 2015 to 2020-end of programme report. London: Public Health England, 2020. |
[19] |
Tagliani E, Cirillo DM, Ködmön C, et al. EUSeqMyTB to set standards and build capacity for whole genome sequencing for tuberculosis in the EU. Lancet Infect Dis, 2018, 18(4):377. doi: 10.1016/S1473-3099(18)30132-4.
doi: S1473-3099(18)30132-4 pmid: 29582760 |
[20] |
Tagliani E, Anthony R, Kohl TA, et al. Use of a whole genome sequencing-based approach for Mycobacterium tuberculosis surveillance in Europe in 2017—2019: an ECDC pilot study. Eur Respir J, 2021, 57(1):2002272. doi: 10.1183/13993003.02272-2020.
doi: 10.1183/13993003.02272-2020 |
[21] |
Kwong JC, McCallum N, Sintchenko V, et al. Whole genome sequencing in clinical and public health microbiology. Pathology, 2015, 47(3):199-210. doi: 10.1097/PAT.0000000000000235.
doi: 10.1097/PAT.0000000000000235 pmid: 25730631 |
[22] |
Meehan CJ, Goig GA, Kohl TA, et al. Whole genome sequencing of Mycobacterium tuberculosis: current standards and open issues. Nat Rev Microbiol, 2019, 17(9):533-545. doi: 10.1038/s41579-019-0214-5.
doi: 10.1038/s41579-019-0214-5 |
[23] |
Walter KS, Colijn C, Cohen T, et al. Genomic variant-identification methods may alter Mycobacterium tuberculosis transmission inferences. Microb Genom, 2020, 6(8): mgen000418. doi: 10.1099/mgen.0.000418.
doi: 10.1099/mgen.0.000418 |
[24] |
CRyPTIC Consortium and the 100, 000 Genomes Project, Allix-Béguec C, Arandjelovic I, et al. Prediction of susceptibility to first-line tuberculosis drugs by DNA sequencing. N Engl J Med, 2018, 379(15):1403-1415. doi: 10.1056/NEJMoa1800474.
doi: 10.1056/NEJMoa1800474 URL |
[1] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[2] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[3] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[6] | Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. |
[7] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[8] | Li Xuelian, Zhang Hongyan, Wang Jun, Wang Qingfeng, Ma Liping, Chu Naihui, Nie Wenjuan. Safety of extended delamanid use in drug-resistant tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 164-168. |
[9] | Xu Zian, Pu Feifei, Feng Jing, Xia Ping. Research progress of high-throughput sequencing technology in the diagnosis and treatment of osteoarticular tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 224-230. |
[10] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[11] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[12] | Zhao Yue, Wang Haoran, Cheng Meijin, Wang Wei, Liang Ruixia, Huang Hairong. The evaluation of the smear-positive and Xpert-negative outcome as an early indicator of nontuberculous mycobacteria existence in clinical specimen [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 61-65. |
[13] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[14] | Sun Danyuchen, Liu Yuhong. Research progress on active case finding of tuberculosis in the elderly population: a literature review [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 96-101. |
[15] | Tang Mi, Li Yao, Hu Yanmei, Wen Xinmin, Tang Zhigang, Huang Sheng, Zhang Yong, Luo Danlin, Yi Hengzhong. Single-cell sequencing reveals differences in natural killer cells between young and elderly patients with severe pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1030-1036. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||