Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (11): 1495-1507.doi: 10.19982/j.issn.1000-6621.20250192
• Original Articles • Previous Articles Next Articles
Parhat Yasin1, Yasen Yimit2,3, Abuduresuli Tuersun2,3(
)
Received:2025-05-07
Online:2025-11-10
Published:2025-10-30
Contact:
Abuduresuli Tuersun
E-mail:595154994@qq.com
Supported by:CLC Number:
Parhat Yasin, Yasen Yimit, Abuduresuli Tuersun. Construction and performance evaluation of a cascade integrated system combining deep learning-based lesion segmentation and classification for tuberculous and Brucella spondylitis[J]. Chinese Journal of Antituberculosis, 2025, 47(11): 1495-1507. doi: 10.19982/j.issn.1000-6621.20250192
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250192
| 模型 | AUC值 | 95%CI值 | 准确率 (%) | F1分数 (%) | 假发现率 (%) | 假阴性率 (%) | 假阳性率 (%) | 阴性预测 值(%) | 精确度 (%) | 召回率 (%) |
|---|---|---|---|---|---|---|---|---|---|---|
| 验证集 | ||||||||||
| ResNet50 | 0.855 | 0.832~0.878 | 79.6 | 83.8 | 22.1 | 21.5 | 21.5 | 77.8 | 85.3 | 82.5 |
| EfficientNet | 0.852 | 0.828~0.873 | 79.0 | 84.4 | 22.1 | 24.7 | 24.7 | 77.9 | 80.7 | 88.5 |
| 测试集 | ||||||||||
| ResNet50 | 0.822 | 0.795~0.845 | 75.2 | 78.6 | 25.0 | 25.8 | 25.8 | 75.0 | 75.7 | 81.7 |
| EfficientNet | 0.800 | 0.774~0.826 | 73.2 | 78.2 | 26.0 | 28.4 | 28.4 | 74.0 | 71.7 | 86.0 |
| 模型 | AUC值 | 95%CI值 | 准确率 (%) | F1分数 (%) | 假发现率 (%) | 假阴性率 (%) | 假阳性率 (%) | 阴性预测 值(%) | 精确度 (%) | 召回率 (%) |
|---|---|---|---|---|---|---|---|---|---|---|
| 软投票 | ||||||||||
| ResNet50 | 0.853 | 0.778~0.926 | 80.4 | 83.1 | 19.0 | 20.4 | 20.4 | 81.0 | 78.3 | 88.5 |
| EfficientNet | 0.832 | 0.753~0.909 | 78.6 | 81.0 | 21.4 | 22.0 | 22.0 | 78.6 | 78.5 | 83.6 |
| 硬投票 | ||||||||||
| ResNet50 | 0.787 | 0.713~0.863 | 79.5 | 82.2 | 20.2 | 21.2 | 21.2 | 79.8 | 77.9 | 86.9 |
| EfficientNet | 0.782 | 0.707~0.865 | 78.6 | 80.6 | 21.5 | 21.8 | 21.8 | 78.5 | 79.4 | 82.0 |
| [1] |
Laine CG, Johnson VE, Scott HM, et al. Global Estimate of Human Brucellosis Incidence. Emerg Infect Dis, 2023, 29(9): 1789-1797. doi:10.3201/eid2909.230052.
pmid: 37610167 |
| [2] | Gao Y, Ma X, Shi Z, et al. MMP expression and its clinical significance in intervertebral disc destruction of spinal tuberculosis, Brucellar spondylitis, and pyogenic spondylitis. J Orthop Surg Res, 2025, 20(1): 208. doi:10.1186/s13018-025-05622-5. |
| [3] | Spernovasilis N, Karantanas A, Markaki I, et al. Brucella Spondylitis: Current Knowledge and Recent Advances. J Clin Med, 2024, 13(2): 595. doi:10.3390/jcm13020595. |
| [4] | Du Y, Manini DR, Xie J, et al. Posterior approach unilateral laminectomy, debridement, and preshaped titanium mesh bone grafting with internal fixation for treatment of lumbar tuberculosis. Sci Rep, 2025, 15(1): 6816. doi:10.1038/s41598-025-91588-7. |
| [5] | Goletti D, Meintjes G, Andrade BB, et al. Insights from the 2024 WHO Global Tuberculosis Report-More Comprehensive Action, Innovation, and Investments required for achieving WHO End TB goals. Int J Infect Dis, 2025, 150: 107325. doi:10.1016/j.ijid.2024.107325. |
| [6] | Kumar P, Singampalli A, Bandela R, et al. Spirocyclic compounds: potential drug leads in the fight against Mycobacterium tuberculosis. Future Med Chem, 2025, 17(7): 819-837. doi:10.1080/17568919.2025.2479413. |
| [7] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164. |
| [8] | Jarde A, Romano E, Afaq S, et al. Prevalence and risks of tuberculosis multimorbidity in low-income and middle-income countries: a meta-review. BMJ Open, 2022, 12(9): e060906. doi:10.1136/bmjopen-2022-060906. |
| [9] | Wang J, Wang X, Zhang X, et al. Modified posterior vertebral column resection for extremely severe post-tubercular kyphosis in adults: a two-year follow-up. J Orthop Surg Res, 2025, 20(1): 173. doi:10.1186/s13018-025-05595-5. |
| [10] | 排尔哈提·亚生, 亚森·依米提, 木拉德·买尔旦, 等. MRI影像组学特征联合临床特征鉴别布鲁杆菌性脊柱炎和化脓性脊柱炎. 中华骨科杂志, 2023, 43(18): 1223-1232. doi:10.3760/cma.j.cn121113-20230130-00033. |
| [11] |
Lee CM, Lee Y, Kang SJ, et al. Positivity rates of mycobacterial culture in patients with tuberculous spondylitis according to methods and sites of biopsies: An analysis of 206 cases. Int J Infect Dis, 2022, 121: 161-165. doi:10.1016/j.ijid.2022.05.021.
pmid: 35568362 |
| [12] | Joo EJ, Yeom JS, Ha YE, et al. Diagnostic yield of computed tomography-guided bone biopsy and clinical outcomes of tuberculous and pyogenic spondylitis. Korean J Intern Med, 2016, 31(4): 762-771. doi:10.3904/kjim.2013.019. |
| [13] |
Wang G, Long J, Zhuang Y, et al. Application of metagenomic next-generation sequencing in the detection of pathogens in spinal infections. Spine J, 2023, 23(6): 859-867. doi:10.1016/j.spinee.2023.02.001.
pmid: 36773890 |
| [14] | Lu YP, Qiu WQ, Zhang T, et al. Epidemiology and laboratory testing of Brucella spondylitis. Sci Rep, 2024, 14(1): 26345. doi:10.1038/s41598-024-77391-w. |
| [15] | Tu LY, Liu XM, Gu WF, et al. Imaging-Assisted Diagnosis and Characteristics of Suspected Spinal Brucellosis: A Retrospective Study of 72 Cases. Med Sci Monit, 2018, 24: 2647-2654. doi:10.12659/Msm.909288. |
| [16] | Dias R, Torkamani A. Artificial intelligence in clinical and genomic diagnostics. Genome Med, 2019, 11(1): 70. doi:10.1186/s13073-019-0689-8. |
| [17] | Linder A, Eggebrecht T, Linder N, et al. Stand-alone MRI tool for semiautomatic volumetry of abdominal adipose compartments in patients with obesity. Sci Rep, 2025, 15(1): 9354. doi:10.1038/s41598-025-87578-4. |
| [18] | Herpe G, Feydy A, D’Assignies G. Efficacy versus Effectiveness in Clinical Evaluation of Artificial Intelligence Algorithms for Medical Diagnosis: The Award Goes to Effectiveness. Radiology, 2023, 307(5):e223132. doi:10.1148/radiol.223132. |
| [19] | Laukamp KR, Pennig L, Thiele F, et al. Automated Meningioma Segmentation in Multiparametric MRI Comparable Effectiveness of a Deep Learning Model and Manual Segmentation. Clin Neuroradiol, 2021, 31(2): 357-366. doi:10.1007/s00062-020-00884-4. |
| [20] | Salimi Y, Mansouri Z, Sun C, et al. Deep learning-based segmentation of ultra-low-dose CT images using an optimized nnU-Net model. Radiol Med, 2025, 130(5): 723-739. doi:10.1007/s11547-025-01989-x. |
| [21] | Chen J, Guo X, Liu X, et al. Differentiation of tuberculous and brucellar spondylitis using conventional MRI-based deep learning algorithms. Eur J Radiol, 2024, 178: 111655. doi:10.1016/j.ejrad.2024.111655. |
| [22] | Yasin P, Mardan M, Xu T, et al. Development and validation of a diagnostic model for differentiating tuberculous spondylitis from brucellar spondylitis using machine learning: A retrospective cohort study. Front Surg, 2022, 9: 955761. doi:10.3389/fsurg.2022.955761. |
| [23] | Abudukadier M, Zhang Y, Li M, et al. A Novel Differentiation Nomogram Model for Brucellar Spondylitis and Tuberculous Spondylitis. Infect Drug Resist, 2024, 17: 5895-5907. doi:10.2147/IDR.S497404. |
| [24] | Wang W, Fan Z, Zhen J. MRI radiomics-based evaluation of tuberculous and brucella spondylitis. J Int Med Res, 2023, 51(8): 3000605231195156. doi:10.1177/03000605231195156. |
| [25] | Alves N, Schuurmans M, Litjens G, et al. Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography. Cancers (Basel), 2022, 14(2): 376. doi:10.3390/cancers14020376. |
| [26] | Zha JH, Xia TY, Chen ZY, et al. Fully automated hybrid approach on conventional MRI for triaging clinically significant liver fibrosis: A multi-center cohort study. J Med Virol, 2024, 96(8): e29882. doi:10.1002/jmv.29882. |
| [27] | Li C, Wang Y, Bai R, et al. Development of fully automated models for staging liver fibrosis using non-contrast MRI and artificial intelligence: a retrospective multicenter study. EClinical Medicine, 2024, 77: 102881. doi:10.1016/j.eclinm.2024.102881. |
| [28] | Azad R, Aghdam EK, Rauland A, et al. Medical Image Segmentation Review: The Success of U-Net. IEEE Trans Pattern Anal Mach Intell, 2024, 46(12): 10076-10095. doi:10.1109/TPAMI.2024.3435571. |
| [29] | 帕哈提·吐逊江, 杨来红, 何雄, 等. 基于FS-T2WI序列联合机器学习对布鲁氏菌性脊柱炎与结核性脊柱炎的鉴别诊断. 中华地方病学杂志, 2023, 42(5): 356-362. doi:10.3760/cma.j.cn231583-20220628-00237. |
| [30] | Ramedani M, Moussavi A, Memhave TR, et al. Deep learning-based automated segmentation of cardiac real-time MRI in non-human primates. Comput Biol Med, 2025, 189: 109894. doi:10.1016/j.compbiomed.2025.109894. |
| [31] | Yang Y, Feng C, Wang R. Automatic segmentation model combining U-Net and level set method for medical images. Expert Syst Appl, 2020, 153: 113419. doi:10.1016/j.eswa.2020.113419. |
| [32] | Xu Q, Ma Z, He N, et al. DCSAU-Net: A deeper and more compact split-attention U-Net for medical image segmentation. Comput Biol Med, 2023, 154: 106626. doi:10.1016/j.compbiomed.2023.106626. |
| [33] | Li P, Li Z, Wang Z, et al. mResU-Net: multi-scale residual U-Net-based brain tumor segmentation from multimodal MRI. Med Biol Eng Comput, 2024, 62(3): 641-651. doi:10.1007/s11517-023-02965-1. |
| [34] | Siddique N, Paheding S, Elkin CP, et al. U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access, 2021, 9: 82031-82057. doi:10.1109/Access.2021.3086020. |
| [35] | Benavente D, Gatica G, González-Feliu J. Balanced Medical Image Classification with Transfer Learning and Convolutional Neural Networks. Axioms, 2022, 11(3): 115. doi:10.3390/axioms11030115. |
| [36] | Gong Z, Li J, Han Y, et al. Nomogram combining dual-energy computed tomography features and radiomics for differentiating parotid warthin tumor from pleomorphic adenoma: a retrospective study. Front Oncol, 2025, 15: 1505385. doi:10.3389/fonc.2025.1505385. |
| [37] | Cheng PM, Malhi HS. Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images. J Digital Imaging, 2017, 30(2): 234-243. doi:10.1007/s10278-016-9929-2. |
| [38] | Ayana G, Dese K, Choe SW. Transfer Learning in Breast Cancer Diagnoses via Ultrasound Imaging. Cancers (Basel), 2021, 13(4): 738. doi:10.3390/cancers13040738. |
| [39] | Piffer S, Ubaldi L, Tangaro S, et al. Tackling the small data problem in medical image classification with artificial intelligence: a systematic review. Prog Biomed Eng (Bristol), 2024, 6(3):032001. doi:10.1088/2516-1091/ad525b. |
| [40] | Baumgartner GL, Hamm CA, Schulze-Weddige S, et al. Metadata-independent classification of MRI sequences using convolutional neural networks: Successful application to prostate MRI. Eur J Radiol, 2023, 166: 110964. doi:10.1016/j.ejrad.2023.110964. |
| [41] | Kaddes M, Ayid YM, Elshewey AM, et al. Breast cancer classification based on hybrid CNN with LSTM model. Sci Rep, 2025, 15(1): 4409. doi:10.1038/s41598-025-88459-6. |
| [42] | Liu J, Zhang K, Wu S, et al. An Investigation of a Multidimensional CNN Combined with an Attention Mechanism Model to Resolve Small-Sample Problems in Hyperspectral Image Classification. Remote Sens, 2022, 14(3): 785. doi:10.3390/rs14030785. |
| [1] | Pan CAO,Fei WANG,Zhe LIU,Jin-cheng LIU,Kuang-li LIANG,Ji-xin YUAN,Feng CHI,Ye-dong HUANG,Jian YANG. Value of FPN in pulmonary tuberculosis screening on the thoracic radiography images [J]. Chinese Journal of Antituberculosis, 2019, 41(3): 288-293. |
| [2] | Fang HUANG,Bo WANG,Guo-lian ZHAO,Hai-dong WANG,Li-yun DANG. Diagnosis value of T lymphocyte detection for non-tuberculous mycobacteria diseases [J]. Chinese Journal of Antituberculosis, 2019, 41(12): 1263-1268. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备11010202007215号
Total visitors: Visitors of today: Now online:
This work is licensed under Creative Commons Attribution 3.0 License.