[1] |
Heyde CE, Lubbert C, Wendt S, et al. Spinal Tuberculosis. Z Orthop Unfall, 2022, 160(1):74-83. doi:10.1055/a-1285-4994.
|
[2] |
Ruparel S, Tanaka M, Mehta R, et al. Surgical Management of Spinal Tuberculosis-The Past, Present, and Future. Diagnostics (Basel), 2022, 12(6):1307. doi:10.3390/diagnostics12061307.
|
[3] |
Hua L, Qian H, Lei T, et al. 3D-Printed Porous Tantalum Coated with Antitubercular Drugs Achieving Antibacterial Properties and Good Biocompatibility. Macromol Biosci, 2022, 22(1):e2100338. doi:10.1002/mabi.202100338.
|
[4] |
Nauth A, Schemitsch E, Norris B, et al. Critical-Size Bone Defects: Is There a Consensus for Diagnosis and Treatment?. J Orthop Trauma, 2018,32 Suppl 1:S7-S11. doi:10.1097/BOT.0000000000001115.
|
[5] |
刘忠军. 3D打印技术在脊柱外科中的应用价值. 中国脊柱脊髓杂志, 2020, 30(9):772-773. doi:10.3969/j.issn.1004-406X.2020.09.01.
|
[6] |
石磊, 栗向东, 王玲, 等. 3D打印个体化人工椎体在多节段脊柱肿瘤切除后脊柱稳定性重建中的应用. 中国脊柱脊髓杂志, 2020, 30(9):782-790. doi:10.3969/j.issn.1004-406X.2020.09.03.
|
[7] |
黄杜军. 3D打印假体在脊柱肿瘤切除术后重建的早期效果观察. 福州:福建医科大学, 2021.
|
[8] |
Zhang M, Matinlinna JP, Tsoi J, et al. Recent developments in biomaterials for long-bone segmental defect reconstruction: A narrative overview. J Orthop Translat, 2020, 22:26-33. doi:10.1016/j.jot.2019.09.005.
|
[9] |
Zhang T, Wei Q, Zhou H, et al. Sustainable release of vancomycin from micro-arc oxidised 3D-printed porous Ti6Al4V for treating methicillin-resistant Staphylococcus aureus bone infection and enhancing osteogenesis in a rabbit tibia osteomyelitis model. Biomater Sci, 2020, 8(11):3106-3115. doi:10.1039/c9bm01968e.
|
[10] |
Wang Z, Maimaitiaili A, Wang T, et al. Rifapentine Polylactic Acid Sustained-Release Microsphere Complex for Spinal Tuberculosis Therapy: Preparation, in vitro and in vivo Studies. Infect Drug Resist, 2021, 14:1781-1794. doi:10.2147/IDR.S304864.
|
[11] |
Zhang Z, Wu L, Li H, et al. Drug Release Characteristics and Tissue Distribution of Rifapentine Polylactic Acid Sustained-Release Microspheres in Rabbits after Paravertebral Implantation. Iran Red Crescent Med J, 2016, 18(11):e38661. doi:10.5812/ircmj.38661.
|
[12] |
Fang X, Dong JF, Wang Q, et al. Preparation and Biocompa-tibility Evaluation of Nanoscale Isoniazide-Loaded Mineralized Collagen Implants for Tuberculous Bone and Joint Repair. J Biomed Nanotechnol, 2022, 18(1):193-201. doi:10.1166/jbn.2022.3218.
pmid: 35180912
|
[13] |
Zhang D, Liu W, Wu XD, et al. Efficacy of novel nano-hydroxyapatite/polyurethane composite scaffolds with silver phosphate particles in chronic osteomyelitis. J Mater Sci Mater Med, 2019, 30(6):59. doi:10.1007/s10856-019-6261-7.
|
[14] |
张晓宇, 陈琪, 杨兴, 等. 聚乳酸-羟基乙酸共聚物微球在骨组织工程中的应用. 中国组织工程研究, 2023, 27(30):4896-4903. doi:10.12307/2023.559.
|
[15] |
张赫, 张泽林, 蔡振存. 3D打印在骨盆骨折的应用进展. 中国矫形外科杂志, 2023, 31(6):520-523. doi:10.3977/j.issn.1005-8478.2023.06.08.
|
[16] |
路康, 李洁, 唐翔宇, 等. 3D打印个体化骨科内植物的临床应用与研究进展. 中华骨与关节外科杂志, 2023, 16(1):77-84. doi:10.3969/j.issn.2095-9958.2023.01.11.
|
[17] |
Senkoylu A, Daldal I, Cetinkaya M. 3D printing and spine surgery. J Orthop Surg (Hong Kong), 2020, 28(2):616587369. doi:10.1177/2309499020927081.
|
[18] |
Li K, Liu Z, Li X, et al. 3D printing-assisted surgery for proximal humerus fractures: a systematic review and meta-analysis. Eur J Trauma Emerg Surg, 2022, 48(5):3493-3503. doi:10.1007/s00068-021-01851-5.
|
[19] |
Jeon S, Lee SH, Ahmed SB, et al. 3D cell aggregate printing technology and its applications. Essays Biochem, 2021, 65(3):467-480. doi:10.1042/EBC20200128.
pmid: 34223609
|
[20] |
Li B, Zhang M, Lu Q, et al. Application and Development of Modern 3D Printing Technology in the Field of Orthopedics. Biomed Res Int, 2022,2022:8759060. doi:10.1155/2022/8759060.
|
[21] |
刘宸希, 康红军, 吴金珠, 等. 3D打印技术及其在医疗领域的应用. 材料工程, 2021, 49(6):66-76. doi:10.11868/j.issn.1001-4381.2019.001042.
|
[22] |
Jing Z, Zhang T, Xiu P, et al. Functionalization of 3D-printed titanium alloy orthopedic implants: a literature review. Biomed Mater, 2020, 15(5):52003. doi:10.1088/1748-605X/ab9078.
pmid: 32369792
|
[23] |
白见福. 熔融电流体3D打印载药支架用于骨修复中抗感染的研究. 广州: 广东工业大学, 2021. doi:10.27029/d.cnki.ggdgu.2021.001505.
|
[24] |
Chae S, Cho D. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering. Acta Biomaterialia, 2023, 156:4-20. doi:10.1016/j.actbio.2022.08.004.
|
[25] |
宋涛. 3D打印个性化聚已内酯/β-磷酸三钙/碳纳米管复合多孔骨组织支架的制备及其性能评价. 青岛:青岛大学, 2020.
|
[26] |
张正也, 刘晓奇, 庄金鹏, 等. 3D打印钛合金在骨科的临床应用及进展. 实用骨科杂志, 2021, 27(9):820-824. doi:10.13795/j.cnki.sgkz.2021.09.011.
|
[27] |
李珊, 刘超, 晏怡果. 医用金属材料在骨科应用中的生物功能化. 中国组织工程研究, 2021, 25(34):5523-5529. doi:10.12307/2021.250.
|
[28] |
甄珍, 王健, 奚廷斐, 等. 3D打印钛金属骨科植入物应用现状. 中国生物医学工程学报, 2019, 38(2):240-251. doi:10.3969/j.issn.0258-8021.2019.02.014.
|
[29] |
刘艳成, 李爽, 张净宇, 等. 多孔隙3D打印人工椎体在脊柱结核重建手术中的应用. 中国脊柱脊髓杂志, 2022, 32(11):1027-1033.
|
[30] |
齐大虎. 3D打印镁掺杂β-磷酸三钙生物陶瓷支架修复骨缺损的机制及应用研究. 武汉:华中科技大学, 2022.
|
[31] |
曹雪飞. 3D打印β-磷酸三钙负载INH、RFP/PLGA缓释微球的生物安全性及成骨作用的研究. 兰州:兰州大学, 2016.
|
[32] |
朱禧. 3D打印载PaMZ/BMP-2的纳米HA人工骨的构建及其成骨和抗结核性能研究. 银川:宁夏医科大学, 2022.
|
[33] |
刘昌昊. 载PaMZ/BMP-2的nHA抗结核人工骨体外对兔BMSCs成骨性能影响的研究. 银川:宁夏医科大学, 2021.
|
[34] |
刘昌昊, 郑建平, 施建党, 等. 负载抗结核药物与骨形态发生蛋白2缓释微球的3D打印人工骨能促进骨髓间充质干细胞成骨. 中国组织工程研究, 2021, 25(28):4447-4453. doi:10.12307/2021.056.
|
[35] |
朱禧, 唐学峰, 施建党, 等. 3D打印载PaMZ/BMP-2的nHA抗结核人工骨体外缓释及抗结核性能研究. 中国脊柱脊髓杂志, 2022, 32(8):735-742.
|
[36] |
Liu H, Zhu H, Cheng L, et al. TCP/PLGA composite scaffold loaded rapamycin in situ enhances lumbar fusion by regulating osteoblast and osteoclast activity. J Tissue Eng Regen Med, 2021, 15(5):475-486. doi:10.1002/term.3186.
pmid: 33686790
|
[37] |
Yahia S, Khalil IA, Ghoniem MG, et al. 3D-bioimplants mimicking the structure and function of spine units for the treatment of spinal tuberculosis. RSC Adv, 2023, 13(25):17340-17353. doi:10.1039/d3ra02351f.
pmid: 37304785
|
[38] |
Roseti L, Parisi V, Petretta M, et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C Mater Biol Appl, 2017, 78:1246-1262. doi:10.1016/j.msec.2017.05.017.
|
[39] |
岳晓锟, 米雪莲, 苏治, 等. 3D打印用于骨缺损治疗的研究进展. 中华骨与关节外科杂志, 2023, 16(1):58-65. doi:10.3969/j.issn.2095-9958.2023.01.08.
|
[40] |
Vella JB, Trombetta RP, Hoffman MD, et al. Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure. J Biomed Mater Res A, 2018, 106(3):663-672. doi:10.1002/jbm.a.36270.
pmid: 29044984
|
[41] |
巩栋, 马永海, 杨新乐, 等. 3D打印β-磷酸三钙负载聚乳酸-羟基乙酸共聚物抗结核药物缓释微球细胞毒性及对BMSCs成骨分化影响的研究. 中国修复重建外科杂志, 2018, 32(9):1131-1136. doi:10.7507/1002-1892.201803067.
|
[42] |
孟磊, 甄平, 梁晓燕. 3D打印多孔β-磷酸三钙负载聚乳酸-羟基乙酸共聚物抗结核药物缓释微球复合材料:构建及细胞毒性评价. 中国组织工程研究, 2016, 20(25):3750-3756. doi:10.3969/j.issn.2095-4344.2016.25.016.
|
[43] |
Zhu M, Li K, Zhu Y, et al. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy. Acta Biomater, 2015, 16:145-155. doi:10.1016/j.actbio.2015.01.034.
pmid: 25653217
|
[44] |
Zheng C, Attarilar S, Li K, et al. 3D-printed HA15-loaded beta-Tricalcium Phosphate/Poly (Lactic-co-glycolic acid) Bone Tissue Scaffold Promotes Bone Regeneration in Rabbit Radial Defects. Int J Bioprint, 2021, 7(1):317. doi:10.18063/ijb.v7i1.317.
|