[1] World Health Organization.Global tuberculosis report 2024. Geneva:World Health Organization,2024. [2] Wishart DS.Metabolomics for Investigating Physiological and Pathophysiological Processes. Physiol Rev,2019,99(4):1819-1875. [3] Jiang J,Li Z,Chen C,et al.Metabolomics Strategy Assisted by Transcriptomics Analysis to Identify Potential Biomarkers Associated with Tuberculosis. Infect Drug Resist,2021,14:4795-4807. [4] Pitaloka DAE,Syamsunarno MRAAA,Abdulah R,et al.Omics Biomarkers for Monitoring Tuberculosis Treatment:A Mini-Review of Recent Insights and Future Approaches. Infect Drug Resist,2022,15:2703-2711. [5] Liu J,Tang L,Lu Q,et al.Plasma Quantitative Lipid Profiles:Identification of CarnitineC18:1-OH,CarnitineC18:2-OH and FFA(20:1)as Novel Biomarkers for Pre-warning and Prognosis in Acute Myocardial Infarction. Front Cardiovasc Med,2022,9:848840. [6] Montaner J,Ramiro L,Simats A,et al.Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol,2020,16(5):247-264. [7] 王爽,吴树法,令垚,等. 基于代谢组学探究非脂质代谢物在肥胖与糖尿病视网膜病变间的中介作用:孟德尔随机化研究. 中国全科医学,1-11[2024-11-18]. [8] 何地,李娟,胡俊杰,等.整合肠道菌群和代谢组学探讨疏肝和胃汤改善抑郁大鼠的作用机制.世界科学技术-中医药现代化,2024,26(2):336-350. [9] Johnson CH,Ivanisevic J,Siuzdak G.Metabolomics:beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol,2016,17(7):451-459. [10] Wei Y,Jasbi P,Shi X,et al.Early Breast Cancer Detection Using Untargeted and Targeted Metabolomics. J Proteome Res,2021,20(6):3124-3133. [11] 郝攀峰,潘澍泽,秦林原,等.机器学习方法在代谢组学数据统计分析中的新近研究进展.中国医院统计,2024,31(04):313-320. [12] Puckett S,Trujillo C,Eoh H,et al.Inactivation of fructose-1,6-bisphosphate aldolase prevents optimal co-catabolism of glycolytic and gluconeogenic carbon substrates in Mycobacterium tuberculosis. PLoS Pathog,2014,10(5):e1004144. [13] Noy T,Vergnolle O,Hartman TE,et al.Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis. J Biol Chem,2016,291(13):7060-7069. [14] de Carvalho LP,Fischer SM,Marrero J,et al. Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates .Chem Biol,2010,17(10):1122-1131. [15] Takayama K,Wang C,Besra GS.Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev,2005,18(1):81-101. [16] Daniel J,Maamar H,Deb C,et al.Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog,2011,7(6):e1002093. [17] 曹荣月,张昕黎,袁冬平,等. 结核分枝杆菌热休克蛋白65对ApoE基因敲除小鼠Treg/Th17免疫平衡的影响.中国药科大学学报,2016,47(3):353-358. [18] VanderVen BC,Fahey RJ,Lee W,et al. Novel inhibitors of cholesterol degradation in Mycobacterium tuberculosis reveal how the bacterium’s metabolism is constrained by the intracellular environment. PLoS Pathog,2015,11(2):e1004679. [19] Driscoll MD,McLean KJ,Levy C,et al. Structural and biochemical characterization of Mycobacterium tuberculosis CYP142:evidence for multiple cholesterol 27-hydroxylase activities in a human pathogen. J Biol Chem,2010,285(49):38270-38282. [20] Casabon I,Swain K,Crowe AM,et al.Actinobacterial acyl coenzyme A synthetases involved in steroid side-chain catabolism. J Bacteriol,2014,196(3):579-587. [21] Yang X,Dubnau E,Smith I,et al.Rv1106c from Mycobacterium tuberculosis is a 3beta-hydroxysteroid dehydrogenase. Biochemistry,2007,46(31):9058-9067. [22] Knol J,Bodewits K,Hessels GI,et al.3-Keto-5alpha-steroid Delta(1)-dehydrogenase from Rhodococcus erythropolis SQ1 and its orthologue in Mycobacterium tuberculosis H37Rv are highly specific enzymes that function in cholesterol catabolism. Biochem J,2008,410(2):339-346. [23] Capyk JK,Casabon I,Gruninger R,et al.Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis. J Biol Chem,2011,286(47):40717-40724. [24] Casabon I,Zhu SH,Otani H,et al.Regulation of the KstR2 regulon of Mycobacterium tuberculosis by a cholesterol catabolite. Mol Microbiol,2013,89(6):1201-1212. [25] Crowe AM,Casabon I,Brown KL,et al.Catabolism of the Last Two Steroid Rings in Mycobacterium tuberculosis and Other Bacteria. mBio,2017,8(2):e00321-17. [26] Wilburn KM,Fieweger RA,VanderVen BC. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog Dis,2018,76(2):fty021. [27] Joshi SM,Pandey AK,Capite N,et al.Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A,2006,103(31):11760-11765. [28] Nazarova EV,Montague CR,La T,et al.Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. Elife,2017,6:e26969. [29] Agapova A,Serafini A,Petridis M,et al.Flexible nitrogen utilisation by the metabolic generalist pathogen Mycobacterium tuberculosis. Elife,2019,8:e41129. [30] 李鹏川,梁艳,张林西,等. 应用生物信息学分析结核分枝杆菌表位串联蛋白W541的结构和功能. 中国防痨杂志,2022,44(12):1345-1357. [31] Shin JH,Yang JY,Jeon BY,et al.1H NMR-based metabolomic profiling in mice infected with Mycobacterium tuberculosis. J Proteome Res,2011,10(5):2238-2247. [32] Borah K,BeyßM,Theorell A,et al. Intracellular Mycobacterium tuberculosis Exploits Multiple Host Nitrogen Sources during Growth in Human Macrophages. Cell Rep,2019,29(11):3580-3591.e4. [33] Albors-Vaquer A,Rizvi A,Matzapetakis M,et al.Active and prospective latent tuberculosis are associated with different metabolomic profiles:clinical potential for the identification of rapid and non-invasive biomarkers. Emerg Microbes Infect,2020,9(1):1131-1139. [34] Cho Y,Park Y,Sim B,et al.Identification of serum biomarkers for active pulmonary tuberculosis using a targeted metabolomics approach. Sci Rep,2020,10(1):3825. [35] Beukes D,van Reenen M,Loots DT,et al. Tuberculosis is associated with sputum metabolome variations,irrespective of patient sex or HIV status:an untargeted GCxGC-TOFMS study. Metabolomics,2023,19(6):55. [36] Zhang A,Sun H,Wang X,et al.Metabonomic urinary biomarkers differentiation between tuberculosis and nontuberculous mycobacterial infections. J Proteome Res,2021,9(12):6825-6833. [37] Johnson S,Want EJ,Li JV,et al.In vivo metabolic profiling reveals the tryptophan metabolic pathway is targeted during tuberculosis treatment. PLoS One,2021,5(12):e15283. [38] Das MK,Bishwal SC,Das A,et al.Deregulated tyrosine-phenylalanine metabolism in pulmonary tuberculosis patients. J Proteome Res,2015,14(4):1947-1956. [39] Vrieling F,Alisjahbana B,Sahiratmadja E,et al.Plasma metabolomics in tuberculosis patients with and without concurrent type 2 diabetes at diagnosis and during antibiotic treatment. Sci Rep,2019,9(1):18669. [40] Ding Y,Raterink RJ,Marín-Juez R,et al.Tuberculosis causes highly conserved metabolic changes in human patients,mycobacteria-infected mice and zebrafish larvae. Sci Rep,2020,10(1):11635. [41] Amalia F,Syamsunarno MRAA,Triatin RD,et al.The Role of Amino Acids in Tuberculosis Infection:A Literature Review. Metabolites,2022,12(10):933. [42] Combrink M,du Preez I,Ronacher K,et al. Time-Dependent Changes in Urinary Metabolome Before and After Intensive Phase Tuberculosis Therapy:A Pharmacometabolomics Study. OMICS,2019,23(11):560-572. [43] Pal R,Hameed S,Kumar P,Singh S,Fatima Z.Comparative lipidomics of drug sensitive and resistant Mycobacterium tuberculosis reveals altered lipid imprints. 3 Biotech,2017,7(5):325. [44] Rêgo AM,Alves da Silva D,Ferreira NV,et al. Metabolic profiles of multidrug resistant and extensively drug resistant Mycobacterium tuberculosis unveiled by metabolomics. Tuberculosis (Edinb),2021,126:102043. [45] Zhao H,Si ZH,Li MH,et al.Pyrazinamide-induced hepatotoxicity and gender differences in rats as revealed by a 1H NMR based metabolomics approach. Toxicol Res (Camb),2016,6(1):17-29. [46] Deng Y,Luo X,Li X,et al.Screening of Biomarkers and Toxicity Mechanisms of Rifampicin-Induced Liver Injury Based on Targeted Bile Acid Metabolomics. Front Pharmacol,2022,13:925509. [47] Cao J,Mi Y,Shi C,et al.First-line anti-tuberculosis drugs induce hepatotoxicity:A novel mechanism based on a urinary metabolomics platform. Biochem Biophys Res Commun,2018,497(2):485-491. [48] Mahapatra S,Woolhiser LK,Lenaerts AJ,et al.A novel metabolite of antituberculosis therapy demonstrates host activation of isoniazid and formation of the isoniazid-NAD+adduct. Antimicrob Agents Chemother,2012,56(1):28-35. [49] 廖传玉,李同心,唐神结,等. 高剂量抗结核药物治疗结核病的研究进展. 中国感染与化疗杂志,2023,23(5):639-646. [50] Chahine EB,Karaoui LR,Mansour H.Bedaquiline:a novel diarylquinoline for multidrug-resistant tuberculosis. Ann Pharmacother,2014,48(1):107-115. [51] Bahuguna A,Rawat S,Rawat DS.QcrB in Mycobacterium tuberculosis:The new drug target of antitubercular agents. Med Res Rev,2021,41(4):2565-2581. [52] Rudraraju RS,Daher SS,Gallardo-Macias R,et al.Mycobacterium tuberculosis KasA as a drug target:Structure-based inhibitor design. Front Cell Infect Microbiol,2022,12:1008213. [53] Nunes JES,Duque MA,de Freitas TF,et al. Mycobacterium tuberculosis Shikimate Pathway Enzymes as Targets for the Rational Design of Anti-Tuberculosis Drugs. Molecules,2020,25(6):1259. [54] Chen Z,Wang T,Liu Z,et al.Inhibition of Autophagy by MiR-30A Induced by Mycobacteria tuberculosis as a Possible Mechanism of Immune Escape in Human Macrophages. Jpn J Infect Dis,2015,68(5):420-424. [55] Rohde K,Yates RM,Purdy GE,et al.Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev,2007,219:37-54. [56] Sao Emani C,Williams MJ,Van Helden PD,et al.Gamma-glutamylcysteine protects ergothioneine-deficient Mycobacterium tuberculosis mutants against oxidative and nitrosative stress. Biochem Biophys Res Commun,2018,495(1):174-178. [57] Oddo M,Renno T,Attinger A,et al.Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J Immunol,1998,160(11):5448-5454. [58] Sia JK,Rengarajan J.Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr,2019,7(4):10.1128/microbiolspec.gpp3-0022-2018. |