Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (7): 693-698.doi: 10.19982/j.issn.1000-6621.20230060
• Review Articles • Previous Articles Next Articles
Liu Dingyi, Sun Hong, Sheng Gang, Sun Zhaogang()
Received:
2023-03-02
Online:
2023-07-10
Published:
2023-06-29
Contact:
Sun Zhaogang, Email: Supported by:
CLC Number:
Liu Dingyi, Sun Hong, Sheng Gang, Sun Zhaogang. Recent advances in the source and biological function of bacterial DNA in extracellular vesicles[J]. Chinese Journal of Antituberculosis, 2023, 45(7): 693-698. doi: 10.19982/j.issn.1000-6621.20230060
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230060
[1] |
Jin Y, Ma L, Zhang W, et al. Extracellular signals regulate the biogenesis of extracellular vesicles. Biol Res, 2022, 55(1):35. doi:10.1186/s40659-022-00405-2.
doi: 10.1186/s40659-022-00405-2 pmid: 36435789 |
[2] |
Kim G, Chen X, Yang Y. Pathogenic Extracellular Vesicle (EV) Signaling in Amyotrophic Lateral Sclerosis (ALS). Neurotherapeutics, 2022, 19(4):1119-1132. doi:10.1007/s13311-022-01232-9.
doi: 10.1007/s13311-022-01232-9 pmid: 35426061 |
[3] |
Toyofuku M, Nomura N, Eberl L. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol, 2019, 17(1):13-24. doi:10.1038/s41579-018-0112-2.
doi: 10.1038/s41579-018-0112-2 pmid: 30397270 |
[4] |
Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev, 2010, 74(1):81-94. doi:10.1128/MMBR.00031-09.
doi: 10.1128/MMBR.00031-09 URL |
[5] |
Schooling SR, Beveridge TJ. Membrane vesicles: an overlooked component of the matrices of biofilms. J Bacteriol, 2006, 188(16):5945-5957. doi:10.1128/JB.00257-06.
doi: 10.1128/JB.00257-06 pmid: 16885463 |
[6] |
György B, Szabó TG, Pásztói M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci, 2011, 68(16):2667-2688. doi:10.1007/s00018-011-0689-3.
doi: 10.1007/s00018-011-0689-3 pmid: 21560073 |
[7] |
周舒扬, 张丕奇, 戴肖东, 等. 细菌外膜囊泡(OMV)研究进展. 微生物学杂志, 2021, 41(6):83-89. doi:10.3969/j.issn.1005-7021.2021.06.011.
doi: 10.3969/j.issn.1005-7021.2021.06.011 |
[8] |
Pérez-Cruz C, Carrión O, Delgado L, et al. New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: implications for DNA content. Appl Environ Microbiol, 2013, 79(6):1874-1881. doi:10.1128/AEM.03657-12.
doi: 10.1128/AEM.03657-12 URL |
[9] |
Pérez-Cruz C, Delgado L, López-Iglesias C, et al. Outer-inner membrane vesicles naturally secreted by gram-negative pathogenic bacteria. PLoS One, 2015, 10(1):e0116896. doi:10.1371/journal.pone.0116896.
doi: 10.1371/journal.pone.0116896 URL |
[10] |
Bitto NJ, Chapman R, Pidot S, et al. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci Rep, 2017, 7(1):7072. doi:10.1038/s41598-017-07288-4.
doi: 10.1038/s41598-017-07288-4 pmid: 28765539 |
[11] |
Brown L, Wolf JM, Prados-Rosales R, et al. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol, 2015, 13(10):620-630. doi:10.1038/nrmicro3480.
doi: 10.1038/nrmicro3480 pmid: 26324094 |
[12] |
Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, et al. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nat Commun, 2017, 8(1):481. doi:10.1038/s41467-017-00492-w.
doi: 10.1038/s41467-017-00492-w pmid: 28883390 |
[13] |
Lee JH, Choi CW, Lee T, et al. Transcription factor σB plays an important role in the production of extracellular membrane-derived vesicles in Listeria monocytogenes. PLoS One, 2013, 8(8):e73196. doi:10.1371/journal.pone.0073196.
doi: 10.1371/journal.pone.0073196 URL |
[14] |
Resch U, Tsatsaronis JA, Le Rhun A, et al. A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus. mBio, 2016, 7(6):e00207-16. doi:10.1128/mBio.00207-16.
doi: 10.1128/mBio.00207-16 |
[15] |
Wang X, Thompson CD, Weidenmaier C, et al. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat Commun, 2018, 9(1):1379. doi:10.1038/s41467-018-03847-z.
doi: 10.1038/s41467-018-03847-z pmid: 29643357 |
[16] |
Rath P, Huang C, Wang T, et al. Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2013, 110(49):E4790-E4797. doi:10.1073/pnas.1320118110.
doi: 10.1073/pnas.1320118110 |
[17] |
Rastogi S, Singh AK, Chandra G, et al. The diacylglycerol acyltransferase Rv3371 of Mycobacterium tuberculosis is required for growth arrest and involved in stress-induced cell wall alterations. Tuberculosis (Edinb), 2017, 104:8-19. doi:10.1016/j.tube.2017.02.001.
doi: 10.1016/j.tube.2017.02.001 URL |
[18] |
Briaud P, Carroll RK. Extracellular Vesicle Biogenesis and Functions in Gram-Positive Bacteria. Infect Immun, 2020, 88(12):e00433-20. doi:10.1128/IAI.00433-20.
doi: 10.1128/IAI.00433-20 |
[19] |
Lee EY, Choi DY, Kim DK, et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics, 2009, 9(24):5425-5436. doi:10.1002/pmic.200900338.
doi: 10.1002/pmic.200900338 URL |
[20] |
Jacobson ES, Ikeda R. Effect of melanization upon porosity of the cryptococcal cell wall. Med Mycol, 2005, 43(4):327-333. doi:10.1080/13693780412331271081.
doi: 10.1080/13693780412331271081 pmid: 16110778 |
[21] |
Gaudin M, Gauliard E, Schouten S, et al. Hyperthermophilic archaea produce membrane vesicles that can transfer DNA. Environ Microbiol Rep, 2013, 5(1):109-116. doi:10.1111/j.1758-2229.2012.00348.x.
doi: 10.1111/j.1758-2229.2012.00348.x URL |
[22] |
Yaron S, Kolling GL, Simon L, et al. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H 7 to other enteric bacteria. Appl Environ Microbiol, 2000, 66(10):4414-4420. doi:10.1128/AEM.66.10.4414-4420.2000.
doi: 10.1128/AEM.66.10.4414-4420.2000 URL |
[23] |
Jiang Y, Kong Q, Roland KL, et al. Membrane vesicles of Clostridium perfringens type A strains induce innate and adaptive immunity. Int J Med Microbiol, 2014, 304(3/4):431-443. doi:10.1016/j.ijmm.2014.02.006.
doi: 10.1016/j.ijmm.2014.02.006 URL |
[24] |
Kadurugamuwa JL, Beveridge TJ. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol, 1995, 177(14):3998-4008. doi:10.1128/jb.177.14.3998-4008.1995.
doi: 10.1128/jb.177.14.3998-4008.1995 pmid: 7608073 |
[25] |
Rumbo C, Fernández-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob Agents Chemother, 2011, 55(7):3084-3090. doi:10.1128/AAC.00929-10.
doi: 10.1128/AAC.00929-10 pmid: 21518847 |
[26] |
Chen WX, Liu XM, Lv MM, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One, 2014, 9(4):e95240. doi:10.1371/journal.pone.0095240.
doi: 10.1371/journal.pone.0095240 URL |
[27] |
Hu Y, Yan C, Mu L, et al. Fibroblast-Derived Exosomes Contribute to Chemoresistance through Priming Cancer Stem Cells in Colorectal Cancer. PLoS One, 2015, 10(5):e0125625. doi:10.1371/journal.pone.0125625.
doi: 10.1371/journal.pone.0125625 URL |
[28] |
Puca V, Ercolino E, Celia C, et al. Detection and Quantification of eDNA-Associated Bacterial Membrane Vesicles by Flow Cytometry. Int J Mol Sci, 2019, 20(21):5307. doi:10.3390/ijms20215307.
doi: 10.3390/ijms20215307 URL |
[29] |
Grande R, Di Marcantonio MC, Robuffo I, et al. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA). Front Microbiol, 2015, 6:1369. doi:10.3389/fmicb.2015.01369.
doi: 10.3389/fmicb.2015.01369 pmid: 26733944 |
[30] |
Liao S, Klein MI, Heim KP, et al. Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol, 2014, 196(13):2355-2366. doi:10.1128/JB.01493-14.
doi: 10.1128/JB.01493-14 pmid: 24748612 |
[31] |
Gloag ES, Turnbull L, Huang A, et al. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci U S A, 2013, 110(28):11541-11546. doi:10.1073/pnas.1218898110.
doi: 10.1073/pnas.1218898110 URL |
[32] |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478):eaau6977. doi:10.1126/science.aau6977.
doi: 10.1126/science.aau6977 URL |
[33] |
Bitto NJ, Cheng L, Johnston EL, et al. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles, 2021, 10(6):e12080. doi:10.1002/jev2.12080.
doi: 10.1002/jev2.12080 |
[34] |
Nandakumar R, Tschismarov R, Meissner F, et al. Intracellular bacteria engage a STING-TBK1-MVB12b pathway to enable paracrine cGAS-STING signalling. Nat Microbiol, 2019, 4(4):701-713. doi:10.1038/s41564-019-0367-z.
doi: 10.1038/s41564-019-0367-z pmid: 30804548 |
[35] |
Giri PK, Schorey JS. Exosomes derived from M.Bovis BCG infected macrophages activate antigen-specific CD4+ and CD8+ T cells in vitro and in vivo. PLoS One, 2008, 3(6):e2461. doi:10.1371/journal.pone.0002461.
doi: 10.1371/journal.pone.0002461 URL |
[36] |
Singh PP, Smith VL, Karakousis PC, et al. Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. J Immunol, 2012, 189(2):777-785. doi:10.4049/jimmunol.1103638.
doi: 10.4049/jimmunol.1103638 URL |
[37] |
Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature, 2000, 408(6813):740-745. doi:10.1038/35047123.
doi: 10.1038/35047123 |
[38] |
Pompei L, Jang S, Zamlynny B, et al. Disparity in IL-12 release in dendritic cells and macrophages in response to Mycobacterium tuberculosis is due to use of distinct TLRs. J Immunol, 2007, 178(8):5192-5199. doi:10.4049/jimmunol.178.8.5192.
doi: 10.4049/jimmunol.178.8.5192 pmid: 17404302 |
[39] |
Torralba D, Baixauli F, Villarroya-Beltri C, et al. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat Commun, 2018, 9(1):2658. doi:10.1038/s41467-018-05077-9.
doi: 10.1038/s41467-018-05077-9 pmid: 29985392 |
[40] |
Sisquella X, Ofir-Birin Y, Pimentel MA, et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors. Nat Commun, 2017, 8(1):1985. doi:10.1038/s41467-017-02083-1.
doi: 10.1038/s41467-017-02083-1 pmid: 29215015 |
[41] |
Li Y, Zhao R, Cheng K, et al. Bacterial Outer Membrane Vesicles Presenting Programmed Death 1 for Improved Cancer Immunotherapy via Immune Activation and Checkpoint Inhibition. ACS Nano, 2020, 14(12):16698-16711. doi:10.1021/acsnano.0c03776.
doi: 10.1021/acsnano.0c03776 URL |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Senior Department of Tuberculosis, the 8th Medical Center of Chinese PLA General Hospital , Editorial Board of Chinese Journal of Antituberculosis , Basic and Clinical Speciality Committees of Tuberculosis Control Branch of China International Exchange , Promotive Association for Medical and Health Care . Expert consensus on multidisciplinary diagnosis and treatment of tuberculous peritonitis [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 243-257. |
[3] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group, Combined with HIV/AIDS Patients Group Chinese Antituberculosis Association, Chinese Antituberculosis Association of STD and AIDS Prevention and Control, the Western China Bone Tuberculosis Alliance, the North China Bone the North China Bone. Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 1-11. |
[4] | Li Zhili, Liu Yuhong. Interpretation of WHO consolidated guidelines on tuberculosis. Module 6: tuberculosis and comorbidities-HIV [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 869-873. |
[5] | Fu Keyan, Zhu Bangzheng, Ye Jian. Research progress on interstitial lung disease combined with Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 823-829. |
[6] | The Nursing Branch of Chinese Antituberculosis Association, Shanghai Pulmonary Hospital Affiliated to Tongji University Dw. Expert consensus on nursing practice for nutritional management of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(5): 495-501. |
[7] | National Center of Medical Quality Control for Respiratory Diseases , Tuberculosis Branch of Chinese Medical Association , Tuberculosis Control Branch of Chinese Antituberculosis Association , China-Japan Friendship Hospital . Clinical practice guidelines for early detection of pulmonary tuberculosis in general medical facilities [J]. Chinese Journal of Antituberculosis, 2024, 46(2): 127-140. |
[8] | Wang Yutong, Liu Yuhong. Interpretation of World Health Organization’s Key updates to the treatment of drug-resistant tuberculosis: rapid communication [J]. Chinese Journal of Antituberculosis, 2024, 46(11): 1303-1305. |
[9] | Daniel P. Chin, Zheng Zhijie. China can eliminate tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1185-1187. |
[10] | Guo Tonglei, Xin Henan, Gao Lei. Interpretation of WHO consolidated guidelines on tuberculosis: Module 1: prevention: tuberculosis preventive treatment [J]. Chinese Journal of Antituberculosis, 2023, 45(8): 723-727. |
[11] | Song Yuanyuan, Xia Hui, Zhao Yanlin. Development process of setting of critical concentrations for phenotypic drug susceptibility testing of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(7): 631-638. |
[12] | Senior Department of Tuberculosis, the th Medical Center of Chinese PLA General Hospital, Editorial Board of Chinese Journal of Antituberculosis, Tuberculosis Control Branch of China Intrnational Exchange and Promotive Association for Medical and Health Care. Expert consensus on the diagnosis and treatment of superficial lymph node tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(6): 531-542. |
[13] | Senior Department of Tuberculosis, the th Medical Center of Chinese PLA General Hospital, Editorial Board of Chinese Journal of Antituberculosis, Tuberculosis Control Branch of China Intrnational Exchange and Promotive Association for Medical and Health Care. Expert consensus on the clinical application of nucleic acid MALDI-TOF MS technique in the diagnosis of tuberculosis and non-tuberculosis mycobacteriosis [J]. Chinese Journal of Antituberculosis, 2023, 45(6): 543-558. |
[14] | Xia Hui, Wang Ruibai, Zhao Yanlin. Differential diagnosis between latent tuberculosis infection and active tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(3): 253-259. |
[15] | Guo Tonglei, Cao Xuefang, Gao Lei. Interpretation of the Operation specification of Mycobacterium tuberculosis recombinant protein skin test [J]. Chinese Journal of Antituberculosis, 2023, 45(2): 130-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||