Chinese Journal of Antituberculosis ›› 2022, Vol. 44 ›› Issue (2): 131-140.doi: 10.19982/j.issn.1000-6621.20210433
• Original Articles • Previous Articles Next Articles
LIU Yuan1, CHEN Jie1, SUN Hui1, LIU Xing1, LIU Meng-xing1, LI Chi-chuan1, YANG Bai-rong2(), YANG Min1(
)
Received:
2021-08-02
Online:
2022-02-10
Published:
2022-02-14
Contact:
YANG Bai-rong,YANG Min
E-mail:18314534982@163.com;1330542876@qq.com
Supported by:
CLC Number:
LIU Yuan, CHEN Jie, SUN Hui, LIU Xing, LIU Meng-xing, LI Chi-chuan, YANG Bai-rong, YANG Min. Exploration of the drug use pattern of traditional Chinese medicine in the treatment of pulmonary tuberculosis and its core drug action mechanism[J]. Chinese Journal of Antituberculosis, 2022, 44(2): 131-140. doi: 10.19982/j.issn.1000-6621.20210433
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20210433
排序 | 药名 | 频数 | 率(%) | 排序 | 药名 | 频数 | 率(%) |
---|---|---|---|---|---|---|---|
1 | 百部 | 113 | 4.25 | 16 | 当归 | 44 | 1.66 |
2 | 麦冬 | 104 | 3.91 | 17 | 桔梗 | 44 | 1.66 |
3 | 黄芪 | 89 | 3.35 | 18 | 醋鳖甲 | 41 | 1.54 |
4 | 白及 | 86 | 3.24 | 19 | 天冬 | 41 | 1.54 |
5 | 地黄 | 83 | 3.12 | 20 | 牡蛎 | 39 | 1.47 |
6 | 川贝母 | 79 | 2.97 | 21 | 白芍 | 36 | 1.35 |
7 | 北沙参 | 75 | 2.82 | 22 | 地骨皮 | 36 | 1.35 |
8 | 甘草 | 73 | 2.75 | 23 | 黄芩 | 36 | 1.35 |
9 | 百合 | 66 | 2.48 | 24 | 党参 | 33 | 1.24 |
10 | 茯苓 | 61 | 2.30 | 25 | 玄参 | 32 | 1.20 |
11 | 五味子 | 52 | 1.96 | 26 | 陈皮 | 30 | 1.13 |
12 | 熟地黄 | 50 | 1.88 | 27 | 醋龟甲 | 29 | 1.09 |
13 | 山药 | 49 | 1.84 | 28 | 黄精 | 27 | 1.02 |
14 | 阿胶 | 45 | 1.69 | 29 | 丹参 | 26 | 0.98 |
15 | 白术 | 45 | 1.69 | 30 | 知母 | 25 | 0.94 |
排序 | 后项 | 前项 | 支持度(%) | 置信度(%) | 提升比 |
---|---|---|---|---|---|
1 | 白及 | 百部 | 71.81 | 80.99 | 1.28 |
2 | 地黄 | 麦冬 | 68.55 | 84.42 | 1.34 |
3 | 百部 | 麦冬 | 68.55 | 83.55 | 1.16 |
4 | 百部 | 黄芪 | 64.69 | 83.49 | 1.16 |
5 | 麦冬 | 黄芪 | 64.69 | 81.19 | 1.18 |
6 | 百部 | 白及 | 63.21 | 92.02 | 1.28 |
7 | 麦冬 | 白及 | 63.20 | 84.04 | 1.23 |
8 | 北沙参 | 白及 | 63.21 | 83.10 | 1.37 |
9 | 川贝母 | 白及 | 63.20 | 80.75 | 1.32 |
10 | 麦冬 | 地黄 | 62.91 | 91.98 | 1.34 |
11 | 百部 | 地黄 | 62.91 | 84.91 | 1.18 |
12 | 川贝母 | 地黄 | 62.91 | 83.49 | 1.37 |
13 | 北沙参 | 地黄 | 62.91 | 80.19 | 1.32 |
14 | 麦冬 | 川贝母 | 61.13 | 89.32 | 1.30 |
15 | 百部 | 川贝母 | 61.13 | 88.83 | 1.24 |
16 | 地黄 | 川贝母 | 61.13 | 85.92 | 1.37 |
17 | 北沙参 | 川贝母 | 61.13 | 84.95 | 1.40 |
18 | 白及 | 川贝母 | 61.13 | 83.49 | 1.32 |
19 | 百部 | 北沙参 | 60.53 | 92.16 | 1.28 |
20 | 麦冬 | 北沙参 | 60.53 | 89.71 | 1.31 |
分子ID | 分子名 | 口服生物 利用度(%) | 类药性 | 来源 中药 | ||||
---|---|---|---|---|---|---|---|---|
MOL005755 | 1-(4-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol | 54.18 | 0.55 | 白及 | ||||
MOL005756 | 2,3,4,7-tetramethoxyphenanthrene | 39.09 | 0.29 | 白及 | ||||
MOL005759 | 2,7-dihydroxy-4-methoxyphenanthrene-2,7-O-diglucoside | 30.22 | 0.74 | 白及 | ||||
MOL005761 | 3-(p-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene | 37.98 | 0.55 | 白及 | ||||
MOL005766 | 3,7-dihydroxy-2,4-dimethoxyphenanthrene-3-O-glucoside | 31.46 | 0.78 | 白及 | ||||
MOL005768 | 4,7-dihydroxy-1-p-hydroxybenzyl-2-methoxy-9,10-dihydrophenanthrene | 30.54 | 0.55 | 白及 | ||||
MOL005770 | bletlolA | 54.43 | 0.55 | 白及 | ||||
MOL005773 | blespirol | 43.74 | 0.86 | 白及 | ||||
MOL005776 | 1-(2,7-dihydroxy-4-methoxy-1-phenanthryl)-4-methoxyphenanthrene-2,7-diol | 35.22 | 0.67 | 白及 | ||||
MOL001558 | sesamin | 56.55 | 0.83 | 百部 | ||||
MOL000358 | beta-sitosterol | 36.91 | 0.75 | 百部 | ||||
MOL000359 | sitosterol | 36.91 | 0.75 | 百部 | ||||
MOL000392 | formononetin | 69.67 | 0.21 | 百部 | ||||
MOL000449 | stigmasterol | 43.83 | 0.76 | 百部 | ||||
MOL005360 | malkangunin | 57.71 | 0.63 | 百部 | ||||
分子ID | 分子名 | 口服生物 利用度(%) | 类药性 | 来源 中药 | ||||
MOL005384 | suchilactone | 57.52 | 0.56 | 百部 | ||||
MOL009361 | 13,15-dideoxyaconitine | 34.67 | 0.25 | 百部 | ||||
MOL009363 | tuberostemonineC | 55.34 | 0.74 | 百部 | ||||
MOL009374 | 7-methoxy-3-methyl-2,5-dihydroxy-9,10-dihydrophenanthrene | 59.00 | 0.21 | 百部 | ||||
MOL009377 | bisdehydroneotuberostemonine | 51.14 | 0.74 | 百部 | ||||
MOL009379 | 2-oxostenine | 72.94 | 0.34 | 百部 | ||||
MOL009380 | bisdehydrostemoninine | 38.51 | 0.73 | 百部 | ||||
MOL009381 | bisdehydrostemoninineA | 62.64 | 0.68 | 百部 | ||||
MOL009382 | bisdehydrostemoninineB | 46.05 | 0.64 | 百部 | ||||
MOL009386 | 3,3'-bis-(3,4-dihydro-4-hydroxy-6-methoxy)-2H-1-benzopyran | 52.11 | 0.54 | 百部 | ||||
MOL009387 | didehydrotuberostemonine | 51.91 | 0.74 | 百部 | ||||
MOL009388 | dihydrostemoninine | 68.01 | 0.72 | 百部 | ||||
MOL009394 | stemonamine | 45.19 | 0.35 | 百部 | ||||
MOL009409 | oxystemoninine | 42.79 | 0.77 | 百部 | ||||
MOL009411 | protostemotinine | 45.99 | 0.75 | 百部 | ||||
MOL009414 | sessilifoliamideC | 65.87 | 0.20 | 百部 | ||||
MOL009419 | sessilifoliamideH | 43.68 | 0.68 | 百部 | ||||
MOL009422 | sessilifolineB | 58.81 | 0.29 | 百部 | ||||
MOL009423 | sessilistemonamineA | 40.28 | 0.73 | 百部 | ||||
MOL009424 | sessilistemonamineB | 40.64 | 0.73 | 百部 | ||||
MOL009430 | stemonamide | 67.46 | 0.38 | 百部 | ||||
MOL009431 | stemonine | 81.75 | 0.72 | 百部 | ||||
MOL009433 | stemoninineB | 74.77 | 0.73 | 百部 | ||||
MOL009434 | stemoninoamide | 66.70 | 0.33 | 百部 | ||||
MOL009436 | stemotinine | 38.69 | 0.46 | 百部 | ||||
MOL009441 | (3S,3'R,4'R,9S,9aS)-4'-hydroxy-3'-methyl-3-[(2S,4S)-4-methyl-5-oxooxolan-2-yl]spiro[1,2,3,5,6,7,8,9a-octahydropyrrolo[1,2-a]azepine-9,5'-oxolane]-2'-one | 85.52 | 0.38 | 百部 |
[1] | 欧阳建军, 白宇乾. 中医方剂对肺结核的治疗概况及展望. 湖南中医药导报, 2003, 9(4):78-79. |
[2] |
刘梦玲, 章新友, 丁亮, 等. 数据挖掘方法在中药配伍规律研究中的应用与进展. 中国中药杂志, 2021, 46(20):5233-5239. doi: 10.19540/j.cnki.cjcmm.20210303.501.
doi: 10.19540/j.cnki.cjcmm.20210303.501 |
[3] |
Li S, Zhang B. Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med, 2013, 11(2):110-120. doi: 10.1016/S1875-5364(13)60037-0.
doi: 10.1016/S1875-5364(13)60037-0 URL |
[4] |
Wu XM, Wu CF. Network pharmacology: a new approach to unveiling Traditional Chinese Medicine. Chin J Nat Med, 2015, 13(1):1-2. doi: 10.1016/S1875-5364(15)60001-2.
doi: 10.1016/S1875-5364(15)60001-2 |
[5] | 陈海彬, 周红光, 李文婷, 等. 网络药理学——中药复方作用机制研究新视角. 中华中医药杂志, 2019, 34(7):2873-2876. |
[6] | 中华人民共和国国家药典委员会. 中华人民共和国药典(2020版一部). 北京: 中国医药科技出版社, 2020. |
[7] | 钟赣生, 杨柏灿. 中药学. 北京: 中国中医药出版社, 2021. |
[8] |
戴磊, 张琳玲, 黎伟林, 等. 肺结核中医证候研究进展. 中西医结合研究, 2019, 11(6):313-315. doi: 10.3969/j.issn.1674-4616.2019.06.013.
doi: 10.3969/j.issn.1674-4616.2019.06.013 |
[9] |
苏海涛, 李同霞, 吕洪清, 等. 中医中药治疗耐多药肺结核的概况. 中医临床研究, 2020, 12(24):140-143. doi: 10.3969/j.issn.1674-7860.2020.24.054.
doi: 10.3969/j.issn.1674-7860.2020.24.054 |
[10] |
王振伟, 沈丽, 张喆, 等. 百部在治疗肺系统疾病中的研究进展. 临床肺科杂志, 2013, 18(3):520-522. doi: 10.3969/j.issn.1009-6663.2013.03.066.
doi: 10.3969/j.issn.1009-6663.2013.03.066 |
[11] |
李占英. 百贝益肺饮配合西药治疗空洞性肺结核疗效观察. 陕西中医, 2014, 35(12):1583-1585. doi: 10.3969/j.issn.1000-7369.2014.12.006.
doi: 10.3969/j.issn.1000-7369.2014.12.006 |
[12] |
石德祥. 百合固金汤联合白及枇杷丸治疗46例肺结核咯血患者的临床研究. 贵州医药, 2019, 43(11):1800-1801. doi: 10.3969/j.issn.1000-744X.2019.11.049.
doi: 10.3969/j.issn.1000-744X.2019.11.049 |
[13] |
束沛, 郑忻, 席瑞, 等. 百部治疗结核病的网络药理学分子机制研究. 辽宁中医药大学学报, 2021, 23(3):107-113. doi: 10.13194/j.issn.1673-842x.2021.03.024.
doi: 10.13194/j.issn.1673-842x.2021.03.024 |
[14] |
Fischer U, Stroh C, Schulze-Osthoff K. Unique and overlapping substrate specificities of caspase-8 and caspase-10. Oncogene, 2006, 25(1):152-159. doi: 10.1038/sj.onc.1209015.
doi: 10.1038/sj.onc.1209015 pmid: 16186808 |
[15] |
董雅洁, 高维娟. bcl-2、bax、caspase-3在细胞凋亡中的作用及其关系. 中国老年学杂志, 2012, 32(21):4828-4830. doi: 10.3969/j.issn.1005-9202.2012.21.123.
doi: 10.3969/j.issn.1005-9202.2012.21.123 |
[16] |
Chang HY, Yang X. Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev, 2000, 64(4):821-846. doi: 10.1128/MMBR.64.4.821-846.2000.
doi: 10.1128/MMBR.64.4.821-846.2000 URL |
[17] | 张锦萍. 初治肺结核患者外周血T淋巴细胞IL-4、IL-10、IL-18、IL-23及IFN-γ表达的研究. 哈尔滨医药, 2013, 33(4):271-273. |
[18] |
de la Barrera S, Aleman M, Musella R, et al. IL-10 down-regulates costimulatory molecules on Mycobacterium tuberculosis-pulsed macrophages and impairs the lytic activity of CD4 and CD8 CTL in tuberculosis patients. Clin Exp Immunol, 2004, 138(1):128-138. doi: 10.1111/j.1365-2249.2004.02577.x.
doi: 10.1111/j.1365-2249.2004.02577.x pmid: 15373915 |
[19] |
Costa DL, Amaral EP, Namasivayam S, et al. Heme oxygenase-1 inhibition promotes IFNγ- and NOS2-mediated control of Mycobacterium tuberculosis infection. Mucosal Immunol, 2021, 14(1):253-266. doi: 10.1038/s41385-020-00342-x.
doi: 10.1038/s41385-020-00342-x URL |
[20] |
胡晓光, 陈灿灿, 张亚男, 等. 机体抗结核分枝杆菌感染的主要免疫细胞及其作用机制. 结核与肺部疾病杂志, 2020, 1(1):71-77. doi: 10.3969/j.issn.2096-8493.2020.01.015.
doi: 10.3969/j.issn.2096-8493.2020.01.015 |
[21] |
de Oliveira LR, Peresi E, Golim Mde A, et al. Analysis of Toll-like receptors, iNOS and cytokine profiles in patients with pulmonary tuberculosis during anti-tuberculosis treatment. PLoS One, 2014, 9(2):e88572. doi: 10.1371/journal.pone.0088572.
doi: 10.1371/journal.pone.0088572 URL |
[22] |
姜丽娜, 赵云霞, 王春, 等. Toll样受体2在结核病患者中性粒细胞凋亡中的作用及意义. 齐齐哈尔医学院学报, 2018, 39(15):1744-1747. doi: 10.3969/j.issn.1002-1256.2018.15.003.
doi: 10.3969/j.issn.1002-1256.2018.15.003 |
[23] |
Chen J, Fujii K, Zhang L, et al. Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci U S A, 2001, 98(14):7783-7788. doi: 10.1073/pnas.141224398.
doi: 10.1073/pnas.141224398 pmid: 11427728 |
[24] |
Gringhuis SI, den Dunnen J, Litjens M, et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity, 2007, 26(5):605-616. doi: 10.1016/j.immuni.2007.03.012.
doi: 10.1016/j.immuni.2007.03.012 pmid: 17462920 |
[25] | 于光远, 詹学, 张祯祯, 等. 巨噬细胞过表达miR-125b促进其凋亡. 细胞与分子免疫学杂志, 2016, 32(7):958-962. |
[26] |
Christine T, Tarigan AP, Ananda FR. The Correlation between Levels of Transforming Growth Factor-β with Pulmonary Fibrosis in Post Pulmonary Tuberculosis in Medan, North Sumatera-Indonesia. Open Access Maced J Med Sci, 2019, 7(13):2075-2078. doi: 10.3889/oamjms.2019.544.
doi: 10.3889/oamjms.2019.544 pmid: 31456828 |
[27] |
Devalraju KP, Neela VSK, Chintala S, et al. Transforming Growth Factor-β Suppresses Interleukin (IL)-2 and IL-1β Production in HIV-Tuberculosis Co-Infection. J Interferon Cytokine Res, 2019, 39(6):355-363. doi: 10.1089/jir.2018.0164.
doi: 10.1089/jir.2018.0164 URL |
[1] | Li Qi, Wang Yujin, Wang Xueyu, Chu Naihui, Nie Wenjuan. Study on the metabolic interaction mechanism between the novel compound WX-081 and clarithromycin [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 142-149. |
[2] | ZHUANG Li, MA Zi-feng, JIANG Yu-wei, HUANG Xing, ZHANG Hui-yong, LU Zhen-hui, WU Xian-wei. Mechanism of traditional Chinese medicine “Qinbudan” in the treatment of pulmonary tuberculosis based on network pharmacology [J]. Chinese Journal of Antituberculosis, 2022, 44(3): 273-283. |
[3] | SUN Qing, HUANG Hai-rong, WANG Gui-rong. In vitro activities and drug resistance mechanisms of bedaquiline, clofazimine and delamanid against common pathogenic non-tuberculous mycobacteria [J]. Chinese Journal of Antituberculosis, 2020, 42(8): 880-884. |
[4] | SONG Yan-hua,GAO Meng-qiu,LI Qi. Research progress on the mechanism of drug resistance of Mycobacterium tuberculosis to ethionamide/pthionamide and ethionamide boosters [J]. Chinese Journal of Antituberculosis, 2020, 42(2): 173-177. |
[5] | LIU Yuan-yuan, CHU Ping, HAN Shu-jing, YANG Hui, LU Jie. Research progress for delamanid resistance mechanism of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2020, 42(11): 1237-1242. |
[6] | ZHANG Ye,LI Yuan-yuan,XU Jian,CHEN Xi,WANG Bin,FU Lei,LU Yu. Preliminary study on the action mechanism of TBI-166 against drug-resistant Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2019, 41(11): 1160-1166. |
[7] | Xu Xuqing,Liu Beidou,Li Qun,et al.. The comparative analysis of demographic characteristics and family disease financial burden of drug-resistant tuberculosis in Zhejiang [J]. Chinese Journal of Antituberculosis, 2004, 26(6): 332-335. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||