Chinese Journal of Antituberculosis ›› 2018, Vol. 40 ›› Issue (9): 993-998.doi: 10.3969/j.issn.1000-6621.2018.09.017
• Review Articles • Previous Articles Next Articles
Received:
2018-07-04
Online:
2018-09-10
Published:
2018-10-17
Contact:
A-dong SHEN
E-mail:shenad16@hotmail.com
Chen SHEN,A-dong SHEN. Research progress on pharmacogenomics of anti-tuberculosis drugs[J]. Chinese Journal of Antituberculosis, 2018, 40(9): 993-998. doi: 10.3969/j.issn.1000-6621.2018.09.017
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2018.09.017
[1] | World Health Organization. Global tuberculosis report 2017. Geneva:World Health Organization, 2017. |
[2] |
Thorn CF, Klein TE, Altman RB . Pharmacogenomics and bioinformatics: PharmGKB. Pharmacogenomics, 2010,11(4):501-505.
doi: 10.2217/pgs.10.15 URL pmid: 3098752 |
[3] |
Devaleenal Daniel B, Ramachandran G, Swaminathan S . The challenges of pharmacokinetic variability of first-line anti-TB drugs. Expert Rev Clin Pharmacol, 2017,10(1):47-58.
doi: 10.1080/17512433.2017.1246179 URL pmid: 27724114 |
[4] |
Weiner M, Peloquin C, Burman W , et al. Effects of tuberculosis, race, and human gene SLCO1B1 polymorphisms on rifampin concentrations. Antimicrob Agents Chemother, 2010,54(10):4192-4200.
doi: 10.1128/AAC.00353-10 URL |
[5] |
Chigutsa E, Visser ME, Swart EC , et al. The SLCO1B1 rs4149032 polymorphism is highly prevalent in South Africans and is associated with reduced rifampin concentrations: dosing implications. Antimicrob Agents Chemother, 2011,55(9):4122-4127.
doi: 10.1128/AAC.01833-10 URL |
[6] |
WHO Guidelines Approved by the Guidelines Review Committee. WHO treatment guidelines for drug-resistant tuberculosis, 2016 update. Geneva: World Health Organization, 2016.
URL pmid: 27748093 |
[7] |
Kita T, Tanigawara Y, Chikazawa S , et al. N-Acetyltransferase2 genotype correlated with isoniazid acetylation in Japanese tuberculous patients. Biol Pharm Bull, 2001,24(5):544-549.
doi: 10.1248/bpb.24.544 URL |
[8] | Teixeira RL, Silva FP Jr, Silveira AR , et al. Sequence analysis of NAT2 gene in Brazilians: identification of undescribed single nucleotide polymorphisms and molecular modeling of the N-acetyltransferase 2 protein structure. Mutat Res, 2010,683(1/2):43-49. |
[9] |
Singla N, Gupta D, Birbian N , et al. Association of NAT2, GST and CYP2E1 polymorphisms and anti-tuberculosis drug-induced hepatotoxicity. Tuberculosis (Edinb), 2014,94(3):293-298.
doi: 10.1016/j.tube.2014.02.003 URL |
[10] |
Toure A, Cabral M, Niang A , et al. Prevention of isoniazid toxicity by NAT2 genotyping in Senegalese tuberculosis patients. Toxicol Rep, 2016,3:826-831.
doi: 10.1016/j.toxrep.2016.10.004 URL pmid: 28959610 |
[11] |
Shen C, Qi H, Sun L , et al. A 3’UTR polymorphism of IL-6R is associated with Chinese pediatric tuberculosis. Biomed Res Int, 2014,2014:483759.
doi: 10.1155/2014/483759 URL pmid: 3977562 |
[12] |
Aminkeng F, Ross CJ, Rassekh SR , et al. Higher frequency of genetic variants conferring increased risk for ADRs for commonly used drugs treating cancer, AIDS and tuberculosis in persons of African descent. Pharmacogenomics J, 2014,14(2):160-170.
doi: 10.1038/tpj.2013.13 URL |
[13] |
Petros Z, Lee MM, Takahashi A , et al. Genome-wide association and replication study of anti-tuberculosis drugs-induced liver toxicity. BMC Genomics, 2016,17(1):755.
doi: 10.1186/s12864-016-3078-3 URL pmid: 3222227671213 |
[14] |
Mokrousov I, Chernyaeva E, Vyazovaya A , et al. Next-Generation Sequencing of Mycobacterium tuberculosis. Emerg Infect Dis, 2016,22(6):1127-1129.
doi: 10.3201/eid2206.152051 URL pmid: 27191040 |
[15] |
Karczewski KJ, Daneshjou R, Altman RB . Chapter 7: pharmacogenomics. PLoS Comput Biol, 2012,8(12):e1002817.
doi: 10.1371/journal.pcbi.1002817 URL |
[16] |
Golka K, Selinski S . NAT2 Genotype and Isoniazid Medication in Children. EBioMedicine, 2016,11:11-12.
doi: 10.1016/j.ebiom.2016.08.040 URL pmid: 27591833 |
[17] |
Parkin DP, Vandenplas S, Botha FJ , et al. Trimodality of isoniazid elimination: phenotype and genotype in patients with tuberculosis. Am J Respir Crit Care Med, 1997,155(5):1717-1722.
doi: 10.1164/ajrccm.155.5.9154882 URL pmid: 9154882 |
[18] |
Kita T, Tanigawara Y, Chikazawa S , et al. N-Acetyltransferase2 genotype correlated with isoniazid acetylation in Japanese tuberculosis patients. Biol Pharm Bull, 2001,24(5):544-549.
doi: 10.1248/bpb.24.544 URL |
[19] |
Verhagen LM, Coenen M, López D ,et al. Full-gene sequencing analysis of NAT2 and its relationship with isoniazid pharmacokinetics in Venezuelan children with tuberculosis. Pharmacogenomics, 2014,15(3):285-296.
doi: 10.2217/pgs.13.230 URL |
[20] |
Hemanth Kumar AK, Ramesh K, Kannan T , et al. NAT2 gene polymorphisms and plasma isoniazid concentrations in tuberculosis patients in south India. Indian J Med Res, 2017,145(1):118-123.
doi: 10.4103/ijmr.IJMR_2013_15 URL |
[21] | Jung JA, Kim TE, Lee H , et al. A proposal for an individuali-zed pharmacogenetic-guided isoniazid dosage regimen for patients with tuberculosis. Drug Des Devel Ther, 2015,9:5433-5438. |
[22] |
Ji B, Truffot-Pernot C, Lacroix C , et al. Effectiveness of rifampin, rifabutin and rifapentine for preventive therapy of tuberculosis in mice. Am Rev Respir Dis, 1993,148(6 pt 1):1541-1546.
doi: 10.1164/ajrccm/148.6_Pt_1.1541 URL |
[23] |
Jayaram R, Gaonkar S, Kaur P , et al. Pharmacokinetics and pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother, 2003,47(7):2118-2124.
doi: 10.1128/AAC.47.7.2118-2124.2003 URL pmid: 161844 |
[24] |
Jeremiah K, Denti P, Chigutsa E , et al. Nutritional supplementation increases rifampin exposure among tuberculosis patients coinfected with HIV. Antimicrob Agents Chemother, 2014,58(6):3468-3474.
doi: 10.1128/AAC.02307-13 URL |
[25] |
Ramesh K, Hemanth Kumar AK, Kannan T , et al. SLCO1B1 gene polymorphisms do not influence plasma rifampicin concentrations in a south Indian population. Int J Tuberc Lung Dis, 2016,20(9):1231-1235.
doi: 10.5588/ijtld.15.1007 URL |
[26] |
Song SH, Chang HE, Jun SH , et al. Relationship between CES2 genetic variations and rifampicin metabolism. J Antimicrob Chemother, 2013,68(6):1281-1284.
doi: 10.1093/jac/dkt036 URL pmid: 3222223471941 |
[27] |
Fatiguso G, Allegra S, Calcagno A , et al. Ethambutol plasma and intracellular pharmacokinetics: A pharmacogenetic study. Int J Pharm, 2016,497(1/2):287-292.
doi: 10.1016/j.ijpharm.2015.11.044 URL pmid: 26642947 |
[28] |
Naidoo A, Ramsuran V, Chirehwa M , et al. Effect of genetic variation in UGT1A and ABCB1 on moxifloxacin pharmacokinetics in South African patients with tuberculosis. Pharmacogenomics, 2018,19(1):17-29.
doi: 10.2217/pgs-2017-0144 URL |
[29] |
Weiner M, Burman W, Luo CC , et al. Effects of rifampin and multidrug resistance gene polymorphism on concentrations of moxifloxacin. Antimicrob Agents Chemother, 2007,51(8):2861-2866.
doi: 10.1128/AAC.01621-06 URL pmid: 1932492 |
[30] | Weiner M, Gelfond J, Johnson-Pais TL , et al. Elevated plasma moxifloxacin concentrations and SLCO1B1 g.-11187G>A polymorphism in adults with pulmonary tuberculosis. Antimicrob Agents Chemother, 2018, 62(5). pii:e01802-17. |
[31] | Zilber LA, Bajdakova, Gardasjan AN . The prevention and treatment of isoniazid toxicity in the therapy of pulmonary tuberculosis 2. An assessment of the prophylactic effect of pyridoxine in low dosage. Bull World Health Organ, 1963,29:457-481. |
[32] |
Roy PD, Majumder M, Roy B . Pharmacogenomics of anti-TB drugs-related hepatotoxicity. Pharmacogenomics, 2008,9(3):311-321.
doi: 10.2217/14622416.9.3.311 URL pmid: 3222218303967 |
[33] | Lee SW, Chung LS, Huang HH , et al. NAT2 and CYP2E1 polymorphisms and susceptibility to first-line anti-tuberculosis drug-induced hepatitis. Int J Tuberc Lung Dis, 2010,14(5):622-626. |
[34] |
Cho HJ, Koh WJ, Ryu YJ , et al. Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis, 2007,87(6):551-556.
doi: 10.1016/j.tube.2007.05.012 URL |
[35] | Stettner M, Steinberger D, Hartmann CJ , et al. Isoniazid-induced polyneuropathy in a tuberculosis patient implication for individual risk stratification with genotyping? Brain Behav, 2015,5:e00326. |
[36] |
Azuma J, Ohno M, Kubota R , et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmaco-genetics-based therapy. Eur J Clin Pharmacol, 2013,69(5):1091-1101.
doi: 10.1007/s00228-012-1429-9 URL |
[37] |
Kubota R, Ohno M, Hasunuma T , et al. Dose-escalation study of isoniazid in healthy volunteers with the rapid acetylator genotype of arylamine N-acetyl transferase 2. Eur J Clin Pharmacol, 2007,63(10):927-933.
doi: 10.1007/s00228-007-0333-1 URL |
[38] |
Wang PY, Xie SY, Hao Q , et al. NAT2 polymorphisms and susceptibility to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int J Tuberc Lung Dis, 2012,16(5):589-595.
doi: 10.5588/ijtld.11.0377 URL |
[39] | 张金玲, 朱学彬, 李世明 , 等. SLCO1B1/ABCB1基因多态性与抗结核药物性肝损伤的相关性分析. 中华疾病控制杂志, 2013,17(6):469-472. |
[40] | 向阳, 孙凤, 詹思延 . 抗结核药物致肝损害与CYP2E1基因多态性. 中国公共卫生, 2011,21(7):910-913. |
[41] |
武鑫, 刘春亮, 薛刚 , 等. 中国人细胞色素P450 2E1基因多态性与抗结核药物性肝损害关系的Meta分析. 中华临床医师杂志(电子版), 2017,11(7):1147-1152.
doi: 10.3877/cma.j.issn.1674-0785.2017.07.019 URL |
[42] |
Li C, Long J, Hu X , et al. GSTM1 and GSTT1 genetic polymorphisms and risk of anti-tuberculosis drug-induced hepatotoxicity: an updated meta-analysis. Eur J Clin Microbiol Infect Dis, 2013,32(7):859-868.
doi: 10.1007/s10096-013-1831-y URL |
[43] | 朱冬林, 席云, 吴雪琼 . GSTM1和GSTT1基因多态性与抗结核药物性肝损害的关系. 中国抗生素杂志, 2011,36(11):864-866. |
[44] |
Liu F, Jiao AX, Wu XR , et al. Impact of glutathione S-transferase M1 and T1 on anti-tuberculosis drug-induced hepatoto-xicity in Chinese pediatric patients, PLoS One, 2014,9(12):e115410.
doi: 10.1371/journal.pone.0115410 URL |
[45] | 祖丽娅·沙塔尔, 顾佳怡, 马晨晨 , 等. GSTM1、GSTT1基因多态性与抗结核药物所致肝损害的相关性分析. 新疆医科大学学报, 2017,40(6):762-766. |
[46] |
Zhang W, He YJ, Gan Z , et al. OATP1B1 polymorphism is a major determinant of serum bilirubin level but not associated with rifampicin-mediated bilirubin elevation. Clin Exp Pharmacol Physiol, 2007,34(12):1240-1244.
doi: 10.1111/cep.2007.34.issue-12 URL |
[47] |
Li LM, Chen L, Deng GH , et al. SLCO1B1*15 haplotype is associated with rifampin-induced liver injury. Mol Med Rep, 2012,6(1):75-82.
doi: 10.3892/mmr.2012.900 URL pmid: 22562052 |
[48] |
马艳, 尹韶华, 杜建 , 等. 383例耐药肺结核患者的相关危险因素分析, 结核病与肺部健康杂志, 2018,7(2):128-134.
doi: 10.3969/j.issn.2095-3755.2016.02.015 URL |
[49] |
Pasipanodya JG, Srivastava S, Gumbo T . Meta-analysis of clinical studies supports the pharmacokinetic variability hypothesis for acquired drug resistance and failure of antituberculosis therapy. Clin Infect Dis, 2012,55(2):169-177.
doi: 10.1093/cid/cis353 URL |
[50] |
Pontual Y, Pacheco VSS, Monteiro SP , et al. ABCB1 gene polymorphism associated with clinical factors can predict drug-resistant tuberculosis. Clin Sci (Lond), 2017,131(15):1831-1840.
doi: 10.1042/CS20170277 URL |
[51] |
Rodríguez-Castillo JA, Arce-Mendoza AY, Quintanilla-Siller A , et al. Possible association of rare polymorphism in the ABCB1 gene with rifampin and ethambutol drug-resistant tuberculosis. Tuberculosis (Edinb), 2015,95(5):532-537.
doi: 10.1016/j.tube.2015.04.004 URL |
[52] |
Mushiroda T, Yanai H, Yoshiyama T , et al. Development of a prediction system for anti-tuberculosis drug-induced liver injury in Japanese patients. Hum Genome Var, 2016,3:16014.
doi: 10.1038/hgv.2016.14 URL |
[53] |
Karczewski KJ, Daneshjou R, Altman RB . Chapter 7: pharmacogenomics. PLoS Comput Biol, 2012,8(12):e1002817.
doi: 10.1371/journal.pcbi.1002817 URL |
[54] |
Wasserman S, Meintjes G, Maartens G . Linezolid in the treatment of drug-resistant tuberculosis: the challenge of its narrow therapeutic index. Expert Rev Anti Infect Ther, 2016,14(10):901-915.
doi: 10.1080/14787210.2016.1225498 URL |
[55] | Bardien S, Human H, Harris T , et al. A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness. BMC Med Genet, 2009,10:2. |
[56] | 邓体瑛 . 抗结核药物研究进展. 中国新药与临床杂志, 2017,36(11):629-634. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[5] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[6] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[7] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[8] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[9] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[10] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[11] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[12] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[13] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[14] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[15] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||